$\diamond \blacklozenge \diamond$ Preface $\diamond \blacklozenge \diamond$

This booklet reports the highlights and the new improvements during FY2014 performed in the High Field Laboratory for Superconducting Materials:HFLSM at Sendai. HFLSM has been developed numbers of new magnets technologies including cryogen free hybrid magnet and cryogen-free superconducting magnets generating magnetic fields above 20 T. Such cryogen-free superconducting magnets surely offer long-term stable and high-quality steady fields for user. HFLSM offers varieties of hybrid and superconducting magnets for researches in materials science, physics, applied superconductivity, chemistry and other pure and inter-disciplinary sciences performed in steady magnetic fields.

The reports in this booklet are selected from the 62 subjects performed at the HFLSM as the user proposals supported by the inter-university research cooperation network. We hope that the booklet help you to see the overview our activities and stimulate the related research collaborations with domestic and oversea users in HFLSM and in the High Magnetic Field Co-laboratory of Japan.

> Oct. 1st, 2015 Hiroyuki Nojiri Director of HFLSM

Selected Topics in 2014 of HFLSM at Sendai

In-Field Current Transport Properties in High- T_c (RE) ₁ Ba ₂ Cu ₃ O _{7-δ} Coated Conductor with BaHfO ₃ Artificial Pinning Centers	1
T. Kiss ¹ , M. Inoue ¹ , K. Higashikawa ¹ , S. Awaji ² , K. Watanabe ² and T. Izumi ³	
 ¹ Department of Electrical and Electronic Engineering, Kyushu University ² Institute for Materials Research, Tohoku University ³ Superconductivity Research Laboratory, ISTEC 	
Applied Strain Dependence of Superconducting Properties for Detwinned (Y, Gd)BCO Coated Conductors	2
T. Suzuki', S. Awaji ² , H. Oguro ² and K. Watanabe ²	
¹ Graduate School of Information Science and Electrical Engineering, Kyushu University	
² Institute for Materials Research, Tohoku University	
Magneto-Electric Effect in a Honeycomb Antiferromagnet Co ₄ Nb ₂ O ₉ N. D. Khanh ¹ , N. Abe ² , T. Arima ² and S. Kimura ³	3
 ¹ Department of Physics, Tohoku University ² Department of Advanced Materials Science, University of Tokyo ³ Institute of Materials Research, Tohoku University 	
Low Energy Magnetic Excitations in PrNb ₂ Al ₂₀ Studied by ⁹³ Nb-NMR	4
H. Tou ¹ , T. Kubo ¹ , H. Kotegawa ¹ , Y. Ihara ² , T. Goto ³ and T. Sasaki ⁴	
¹ Department of Physics, Kobe University	
² Department of Physics, Hokkaido University	
³ Physics Division, Sophia University	
⁴ Institute for Materials Research, Tohoku University	
High Field NMR Study of the Frustrated Magnet Volborthite	5
M. Yoshida ¹ , K. Matsui ² , T. Goto ² , S. Kimura ³ and T. Sasaki ³	
 ¹ Institute for Solid State Physics, University of Tokyo ² Department of Physics, Sophia University 	
³ Institute for Materials Research, Tohoku University	
High Field ESR Measurements of the Isolated Dimer System in Circularly Polarized Light	6
S. Kimura ¹ , K. Watanabe ¹ and Z. Honda ²	
¹ Institute for Materials Research, Tohoku University	
² Graduate School of Science and Engineering, Saitama University	

Magnetotransport Properties of Topological Insulator (Bi,Sb) ₂ Te ₃ Thin Film Field-Effect Transistor under a High-Magnetic Field	7
J. Shiogai ¹ , A. Tsukazaki ¹ , R. Yoshimi ² , M. Kawasaki ^{2, 3} and Y. Tokura ^{2, 3}	
 ¹ Institute for Materials Research, Tohoku University ² Department of Applied Physics and Quantum-Phase Electronics Center, University of Tokyo ³ DWEDLG and Gramma China China 	
^o RIKEN Center for Emergent Matter Science	
Magnetic Properties of Nd-Fe-B Sintered Magnets Annealed in Strong Gradient Magnetic Fields	8
H. Kato ¹ , Y. Mizuno ¹ , K. Koike ¹ and K. Takahashi ²	
 ¹ Graduate School of Science and Engineering, Yamagata University ² Institute for Materials Research, Tohoku University 	
Ionic Vacancy Formed in Electrochemical Reactions under High Magnetic Fields Y. Oshikiri ¹ , A. Sugiyama ² , M. Miura ³ , R. Aogaki ⁴ and I. Mogi ⁵	9
¹ Yamagata College of Industry and Technology ² Waseda University	
³ Hokkaido Polytechnic College ⁴ Polytechnic University ⁵ Institute of Materials Research, Tohoku University	
High-Field Optical Spectroscopy of the Chromium Spinel CdCr ₂ O ₄ Using 30 T Hybrid Magnet	10
Y. Sawada ¹ , S. Kimura ¹ , K. Watanabe ¹ and H. Ueda ²	
 ¹ Institute for Materials Research, Tohoku University ² Department of Science, Kyoto University 	

Selected Topics in 2014 of HFLSM at Sendai

BaHfO ₃ 人工ピンニングセンターを導入した (RE) ₁ Ba ₂ Cu ₃ O ₇₋₀ 高温超伝導線材の 磁場中電流輸送特性	1
木須隆暢 ¹ ,井上昌睦 ¹ ,東川甲平 ¹ ,淡路 智 ² ,渡辺和雄 ² ,和泉輝郎 ³	
¹ 九州大学システム情報科学研究院, ² 東北大学金属材料研究所, ³ 超電導工学研究所	
デツインした(Y,Gd)BCO コート線材における超伝導特性のひずみ依存性 鈴木 匠 ¹ , 淡路 智 ² , 小黒英俊 ² , 渡辺和雄 ²	2
¹ 九州大学システム情報科学研究院, ² 東北大学金属材料研究所	
蜂の巣格子反強磁性体 Co₄Nb₂O₅の電気磁気効果	3
Nguyen Duy Khanh ¹ ,阿部伸行 ² ,有馬孝尚 ² ,木村尚次郎 ³	
¹ 東北大学理学研究科, ² 東京大学新領域創成科学研究科, ³ 東北大学金属材料研究所	
PrNb ₂ Al ₂₀ の ⁹³ Nb-NMR による低エネルギー磁気励起の研究 藤 香樹 ¹ 久保御郎 ¹ 小毛田 恒 ¹ 共原慶音 ² 後藤貴行 ³ 佐々太孝音 ⁴	4
¹ 神戸大学理学研究科, ² 北海道大学理学研究科, ³ 上智大学理工学研究科, ⁴ 東北大学金属材料研究所	
フラストレート磁性体ボルボサイトの強磁場 NMR	5
吉田 誠 ¹ , 松井一樹 ² , 後藤貴行 ² , 木村尚次郎 ³ , 佐々木孝彦 ³	
¹ 東京大学物性研究所, ² 上智大学理工学部, ³ 東北大学金属材料研究所	
孤立ダイマー系 Na₂Co₂(C₂O₄)₃(H₂O)₂の円偏光 ESR	6
木村尚次郎 ¹ ,渡辺和雄 ¹ ,本多善太郎 ²	
'東北大学金属材料研究所, ² 埼玉大学理工学研究科	
トポロジカル絶縁体(Bi,Sb) ₂ Te ₃ 薄膜における強磁場量子輸送測定 塩貝純一 ¹ ,塚崎 敦 ¹ ,吉見龍太郎 ² ,川﨑雅司 ^{2,3} ,十倉好紀 ^{2,3}	7
¹ 東北大学金属材料研究所, ² 東京大学工学系研究科, ³ 理化学研究所創発物性科学研究センター	

ネオジム系焼結磁石の強勾配磁場中熱処理と磁気特性

加藤宏朗¹,水野善幸¹,小池邦博¹,高橋弘紀²

'山形大学理工学研究科, '東北大学金属材料研究所

高磁場下における電気化学反応により生成するイオン空孔

押切剛伸¹, 杉山敦史², 三浦 誠³, 青柿良一⁴, 茂木 巖⁵

¹山形県立産業技術短期大学校,²早稲田大学,³北海道職業能力開発大学校, ⁴職業能力開発総合大学校,⁵東北大学金属材料研究所

30 T ハイブリッドマグネットを用いたクロムスピネル酸化物 $CdCr_2O_4$ の 強磁場分光測定

10

澤田祐也¹,木村尚次郎¹,渡辺和雄¹,植田浩明²

'東北大学金属材料研究所, '京都大学理学研究科

9

In-Field Current Transport Properties in High-*T*_c (RE)₁Ba₂Cu₃O_{7-δ} Coated Conductor with BaHfO₃ Artificial Pinning Centers

BaHfO3人工ピンニングセンターを導入した

(RE)1Ba2Cu3O7-8高温超伝導線材の磁場中電流輸送特性

In-field current transport properties in high- T_c (RE)₁Ba₂Cu₃O_{7- δ} coated conductors (CCs), where RE is rare-earth element, have been investigated. Contour map of critical current density, J_c , in magnetic field and temperature (*B*-*T*) plane, and macroscopic pinning force density curve, $F_p \equiv J_c B$, have been shown. Dots are measurements whereas solid curves are analytical expression derived by the authors. The sample, Eu₁Ba₂Cu₃O_{7- δ}, has been obtained from high rate pulse laser deposition with introduction of nanostructured artificial pinning centers utilizing 3.5 mol% BaHfO₃. Significant enhancement of flux pinning strength has been confirmed in comparison with previous CCs. These analyses are also useful to design high field magnet based on the CCs.

T. Kiss¹, M. Inoue¹, K. Higashikawa¹, S. Awaji², K. Watanabe², T. Izumi³

¹Dept. of Electrical Eng., Kyushu University, ²IMR, Tohoku University, ³ISTEC-SRL

Reference: M. Inoue, K. Tanaka, K. Imamura, K. Higashikawa, K. Kimura, Y. Takahashi, T. Koizumi, T. Hasegawa, S. Awaji, K. Watanabe, M. Yoshizumi, T. Izumi, T. Kiss, "Current Transport Properties of TFA-MOD Processed Long-Length Coated Conductor Doped with Artificial Pinning Centers", *IEEE Trans. Appl. Supercond.* **25** (2015) 6605804

高速 PLD プロセスにより得られた BHO 人工ピンニングセンター導入 EuBCO 線材の 臨界電流特性を広範な実用環境下に亘り測定し,我々の提案している電輸送特性の物 理モデルを用いて温度,磁場依存性を解析的に表した.これらの成果は,強磁場マグ ネットを含めた各種超伝導マグネットの開発に向けた基礎データとして有用である. 木須隆暢¹,井上昌睦¹,東川甲平¹,淡路 智²,渡辺和雄²,和泉輝郎³ ¹九州大学システム情報科学研究院,²東北大学金属材料研究所,³超電導工学研究所

We succeeded in the complete detwin of (Y, Gd)Ba₂Cu₃O_y((Y, Gd)BCO) tapes by annealing under an external uniaxial strain. The uniaxial-strain dependencies of the critical temperature (T_c) and critical current density (J_c) along the *a* and *b* crystal axes were investigated over a wide strain region using the detwin of (Y, Gd)BCO tapes. For a wide strain region, we found that the strain dependence of T_c for *a* and *b* crystal axes can be well fitted by a power-law function whereas the single crystal behavior is linear. The strain dependences of J_c are similar with those of T_c . It is suggested that the T_c becomes a maximum value when the CuO₂ plane becomes a square, and its lattice constant is close to 0.385 nm.

T. Suzuki¹, S. Awaji², H. Oguro², K. Watanabe²

¹ Graduate School of Information Science and Electrical Engineering,

Kyushu University, ²IMR, Tohoku University

Reference: S. Awaji, T. Suzuki, H. Oguro, K. Watanabe and K. Matsumoto, "Strain-controlled critical temperature in REBa2Cu3Oy-coated conductors", Scientific Reports **5**, 11156 (2015)

ひずみを印加しながらアニールすることにより、(Y, Gd)Ba₂Cu₃O_y((Y, Gd)BCO)テープ線材の デツインに初めて成功した。このデツインした(Y, Gd)BCO 線材を用いて、a、b 軸それぞれの T_c と J_c の広い範囲の一軸ひずみ依存性の評価を行った。広い範囲の測定により T_c は単結晶 の結果とはことなりべき乗のひずみ依存性となることを初めて見出した。また、 J_c も T_c と同様に べき乗のひずみ依存性となった。さらに、CuO₂面が正方形となり、その格子定数が 0.385 nm となるとき、最大の T_c となることが示唆された。

鈴木 匠¹, 淡路 智², 小黒 英俊², 渡辺 和雄²

1九州大学システム情報科学研究院,2東北大学金属材料研究所

Magneto-Electric Effect in a Honeycomb Antiferromagnet Co₄Nb₂O₉ 蜂の巣格子反強磁性体 Co₄Nb₂O₉の電気磁気効果

Hexagonal $Co_4Nb_2O_9$ is composed of honeycomb-type Co layers stacking along the c-axis. The Co moments are arranged antiferromagnetically, as shown in the left panel, below 27 K. In the antiferromagnetic phase, a linear magneto-electric effect is observed. For example, an external magnetic field along the [110] axis generates an electric polarization parallel or antiparallel to the magnetic field. It has been observed that a rotation of the magnetic field around the c-axis by an angle of θ induces the rotation of the electric polarization by -2θ , as shown in the right panel. This phenomenon is ascribed to the rotation of every Co moment, and hence likely common to the honeycomb-type antiferromagnets.

- N. D. Khanh¹, N. Abe², T. Arima², S. Kimura³
- ¹ Dept. Phys., Tohoku University, ² Dept. Adv. Mat. Sci., University of Tokyo,
- ³ IMR, Tohoku University

Co₄Nb₂O₉は蜂の巣構造的に配列した Co の形成する二次元層が c 軸方向に積み重なった 六方晶構造を有する。Co の磁気モーメントは 27 K 以下で左図に示すような反強磁性配列 を取る。この反強磁性相では、線形電気磁気効果が観測される。例えば、[110]方向に磁場 を印加するとそれと平行、あるいは反平行な電気分極が出現する。この状態から磁場を c 軸 を中心に角度 θだけ回転させたところ、右図に示すように、電気分極が c 軸を中心で角度 -20だけ回転する現象が観測された。この電気磁気効果は、磁場回転に伴って各磁気モー メントが回転することにより生じるものであり、蜂の巣型反強磁性体に共通の現象だと考えら れる。

Nguyen Duy Khanh¹, 阿部伸行², 有馬孝尚², 木村尚次郎³ ¹東北大学理学研究科, ²東京大学新領域創成科学研究科, ³東北大学金属材料研究所

Low Energy Magnetic Excitations in PrNb₂Al₂₀ Studied by ⁹³Nb-NMR PrNb₂Al₂₀の ⁹³Nb-NMR による低エネルギー磁気励起の研究

Pr-based compound PrNb₂Al₂₀, whose crystal electric ground state is of a non-magnetic Γ_3 state, exhibits non Fermi liquid like behavior at low temperatures. The polycrystalline sample was prepared by Dr. R. Higashinaka et al., Tokyo Metropolitan University. ⁹³Nb-Nuclear Magnetic Resonance (NMR) measurements have been carried out for a polycrystalline PrNb₂Al₂₀. A well split ⁹³Nb-NMR spectrum was obtained at 10 T. Temperature dependences of ⁹³Nb-NMR longitudinal relaxation rate $1/T_1$ were observed at various magnetic fields up to 19 T. ⁹³Nb $1/T_1$ was suppressed slightly at high magnetic fields above 10 T. However, the temperature dependences of $1/T_1$ at various magnetic fields follow a power law of $T^{2/3}$ below 100 K. This result indicates that the low energy excitation of the non-magnetic Γ_3 ground state is different from the Fermi liquid state.

H. Tou¹, T. Kubo¹, H. Kotegawa¹, Y. Ihara², T. Goto³, and T. Sasaki⁴ ¹Dept. of Phys., Kobe University, ²Dept. of Phys., Hokkaido University, ³ Phys. Div., Sophia University, ⁴IMR, Tohoku University

結晶場基底状態は Γ_3 非磁性二重項状態をとる Pr 化合物 PrNb₂Al₂₀ は低温で非フェルミ流体的振る舞いを示す。首都大学東京の東中隆二助教等により作成された多結晶試料について⁹³Nb-NMR 実験を行った。10 テスラの磁場下では典型的な Nb-NMR 粉末パターンが観測された。19 テスラまでの磁場下での NMR 緩和率 1/T₁を測定した。10 テスラ以上の磁場で 1/T₁緩和率は僅かに抑制されるが、温度依存性は磁場に依らず $T^{2/3}$ に従う。この結果は結晶場 Γ_3 非磁性基底状態をとる系の低エネルギー励起が典型的なフェルミ流体描像では説明できないことを示唆する。

藤 秀樹¹, 久保徹郎¹, 小手川恒¹, 井原慶彦², 後藤貴行³, 佐々木孝彦⁴ ¹神戸大大学院理学研究科,²北海道大学•大学院理学研究科, ³上智大学大学院理工学研究科、⁴東北大学金属材料研究所

High Field NMR Study of the Frustrated Magnet Volborthite フラストレート磁性体ボルボサイトの強磁場 NMR

The frustrated magnet volborthite $[Cu_3V_2O_7(OH)_2 \cdot 2H_2O]$ exhibits a novel magnetic phase at 23-26 T, which may be regarded as a spin nematic phase. In this study, we have performed high field NMR measurements of volborthite in the magnetic field range of 20-24 T by using the hybrid magnet. As shown in Fig. (a), the line width of the field-swept NMR spectra increases with decreasing temperature, indicating a magnetic transition near 2 K at 20-23 T (Fig. b). The nuclear spin-lattice relaxation rate $1/T_1$ at 20 T, where a spin-density-wave order is realized, decreases with decreasing temperature, whereas $1/T_1$ at 23 T increases (Fig. c). These results indicate that inhomogeneous magnetic moments appear below 2 K at 23 T.

M. Yoshida¹, K. Matsui², T. Goto², S. Kimura³, T. Sasaki³

¹ ISSP, University of Tokyo, ² Dept. of Phys., Sophia University,

³ IMR, Tohoku University

フラストレート磁性体ボルボサイト Cu₃V₂O₇(OH)₂・2H₂O は 23-26 テスラの磁場領域で奇妙な 磁気相を示し、それがスピンネマティック相である可能性が指摘されている. 我々はハイブリッドマグネットで 20-24 T の領域を NMR 測定で調べた. 図 a に示す磁場スイープ NMR スペクトルの温度依存性から、わずかな線幅の広がりが観測され、転移温度が 2 K 程度である ことが分かった(図 b). 核磁気緩和率 $1/T_1$ を調べると、スピン密度波秩序が起こる 20 T では 温度の低下とともに $1/T_1$ が小さくなるが、23 T では増大する振る舞いが観測された(図 c). こ れらの結果は、23 T の低温領域において不均一な内部磁場の発生を示唆する.

吉田誠¹,松井一樹²,後藤貴行²,木村尚次郎³,佐々木孝彦³ ¹東京大学物性研究所,²上智大学理工学部,³東北大学金属材料研究所

High Field ESR Measurements of the Isolated Dimer System in Circularly Polarized Light 孤立ダイマー系 Na₂Co₂(C₂O₄)₃(H₂O)₂の円偏光 ESR

We have studied the selection rule of the ESR signal of the isolated antiferromagnetic dimer system Na₂Co₂(C₂O₄)₃(H₂O)₂ in high magnetic fields. For usual magnetic dipole transition, the magnetic resonance signal in illuminating circularly polarized light is abruptly changed by reverse of the direction of the external field, because the spin system couples with either left or right handed circularly polarized light. However, the observed change in the ESR signal ω_{r} , which corresponds to the direct transition between the spin singlet and triplet states in Na₂Co₂(C₂O₄)₃(H₂O)₂, is very little. From this curious result, we consider that the direct transition is caused by the electric dipole transition. We propose that the spin current mechanism, which gives rise to a spin-driven ferroelectricity in multiferroic materials, is responsible to induce a finite probability for the electric dipole active transition.

S. Kimura¹, K. Watanabe¹, Z. Honda²

¹ IMR, Tohoku University, ² Graduate School of Science and Engineering, Saitama University

円偏光を用いた ESR 測定から、孤立ダイマー系 Na₂Co₂(C₂O₄)₃(H₂O)₂のスピンシングレット からトリプレット状態への直接遷移が奇妙な選択則を示すことを明らかにした。通常の磁気 双極子遷移による ESR 信号強度は、円偏光下で磁場反転により大きく変化するのに対し、 直接遷移からの信号ωの強度はほとんど変化していない。この直接遷移は、電磁波の振 動電場によって励起されている可能性があると考えている。マルチフェロイック物質の磁気 強誘電を引き起こすスピンカレント機構が働くと、振動電場による直接遷移は可能である。

木村尚次郎¹,渡辺和雄¹,本多善太郎²

1 東北大学金属材料研究所, 2 埼玉大学大学院理工学研究科

Magnetotransport Properties of Topological Insulator (Bi,Sb)₂Te₃ Thin Film Field-Effect Transistor under a High Magnetic Field トポロジカル絶縁体(Bi,Sb)₂Te₃薄膜における強磁場量子輸送測定

The v = 0 quantum Hall state (QHS) observed in a topological insulator (Bi,Sb)₂Te₃ was attributed to a pseudo-spin Hall insulator as a result of resolved degeneracy of top and bottom surface states. In this study, we elucidate two important features in magnetotransport measurements under up to B = 26 T and T = 25 mK that (a) the broad peak of the sheet resistance R_{xx} as a function of gate voltage V_G around charge neutral point (CNP) and (b) a large positive magnetoresistance as a function of magnetic field when V_G is close to V_{CNP} .

- J. Shiogai¹, A. Tsukazaki¹, R. Yoshimi², M. Kawasaki^{2,3}, Y. Tokura^{2,3}
- ¹ IMR, Tohoku University,
- ² Department of Applied Physics and Quantum-Phase Electronics Center (QPEC)
- ³ RIKEN Center for Emergent Matter Science (CEMS)

トポロジカル絶縁体(Bi,Sb)₂Te₃において観測されるv = 0の量子ホール状態は上下の表面 状態の縮退が解けることで生じる擬スピンホール状態が実現していると考えられる. 我々は, (Bi,Sb)₂Te₃薄膜電界効果トランジスタにおいて, ハイブリットマグネットを使用したB = 26T, T = 25 mK 環境下での磁気抵抗効果及びホール効果測定を行った. その結果, v = 0の量子 ホール状態が現れる試料では, 電荷中性点近傍において, (a)縦抵抗 R_{xx} のゲート電圧 V_{G} 依存性の半値幅が広く, (b)発散的な正の磁気抵抗効果を示すという特徴を明らかにした.

塩貝純一¹, 塚崎 敦¹, 吉見龍太郎², 川崎雅司²³, 十倉好紀²³ ¹東北大学金属材料研究所, ²東京大学大学院工学系研究科, ³理化学研究所創発物性科学研究センター

Magnetic Properties of Nd-Fe-B Sintered Magnets Annealed in Strong Gradient Magnetic Fields

ネオジム系焼結磁石の強勾配磁場中熱処理と磁気性

Grain-boundary diffusion processing (GBDP) of Dy source from the surface of sintered Nd-Fe-B magnets is paid much attention as a promising method to save the usage of an important rare metal, Dy. However, it is difficult to apply GBDP to large-sized bulk magnets since the diffusion depth is limited to as much as 5 mm. On the other hand, we noticed that the paramagnetic susceptibility of Dy^{3+} is about an order of magnitude larger than that of Nd³⁺, located in the grain boundary "Nd-rich" phase. We therefore investigated the effect of strong gradient magnetic fields on the GBDP in sintered Nd-Fe-B magnets. Shown in the figure are the demagnetization curves of sintered Nd-Fe-B magnets for which sputter-deposoted Dy was diffusion processed at $T_{diffusion}$ =850°C under the strong gradient magnetic fields of 18T-CSM. Coercivity of the magnetic GBDP sample is apparently larger than that of the reference sample, suggesting that a magnetic-force-assisted diffusion of Dy is working.

H. Kato¹, Y. Mizuno¹, K. Koike¹, K. Takahashi²

¹ Graduate School of Science and Engeneering, Yamagata University

² Institute for Materials Research, Tohoku University

拡散深さの限界が課題となっている ネオジム焼結磁石の Dy 粒界拡散法を克服するため, 強勾配磁場中で Dy の粒界拡散を検討した. その結果, 上図のように有意な保磁力向上 効果を観測することができた.

加藤 宏朗¹,水野善幸¹,小池邦博¹,高橋 弘紀² ¹山形大学大学院理工学研究科,²東北大学金属材料研究所

Ionic Vacancy Formed in Electrochemical Reactions under High Magnetic Fields

高磁場下における電気化学反応により生成するイオン空孔

Under high magnetic fields, the lifetime of ionic vacancy as well as the nanobubble formation in electrode reaction was measured. Ionic vacancy is a negatively or positively charged free vacuum space of the order of 0.1 nm, produced in liquid solution. However, it has been believed that the vacancy would be quite unstable. Using a concentric electrode system under a vertical magnetic field (cyclotron magnetohydrodybnamic eletrode, CMHDE), in ferricyanide/ferrocyanide redox-reaction, copper cathodic deposition and copper anodic dissolution, we have actually measured the lifetime. As a result, it was clarified that the lifetime is distributed from 1 ms to 1 s, coressponding to the intrinsic lifetime and the nanobubble formation time, respectively. Then, with the same type of electrode system, the microbubble grobules evolved from the collision of nanobubbles were successfully observed.

Y. Oshikiri¹, A. Sugaiyama², M. Miura³, R. Aogaki⁴, I. Mogi⁵

¹ Yamagata College of Industry and Technology, ² Waseda University, ³ Hokkaido

Polytechnic College, ⁴Polytechnic University, ⁵IMR, Tohoku University

Reference: Y. Oshikiri, R. Aogaki, M. Miura, A. Sugiyama, R. Morimoto, M. Miura, I. Mogi, and Y. Yamauchi, "Microbubble Formation from Ionic Vacancies in Copper Anodic Dissolution under a High Magnetic Field", Electrochemistry, 83 (2015) 549.

溶液中における電極反応とともに生成するイオン空孔は,直径 0.1nm 程度の帯電した真空 部分の周りを反対符号の電荷が取り囲んだ構造をもっており、室温で1秒ほどの寿命を持つ. このイオン空孔同士は高磁場中で MHD 流れにより衝突し(左図)、ナノバブルを経てマイク ルバブルを生成する。フェリシアン/フェロシアンの Redox 反応系、銅の電析及び銅の溶解 反応においてイオン空孔由来のマイクロバブルの可視化に成功した(右図)。

押切 剛伸¹, 杉山 敦史², 三浦 誠³, 青柿 良一⁴, 茂木巖⁵

1山形県立産業技術短期大学校,2早稲田大学,3北海道職業能力開発大学校,

4職業能力開発総合大学校,5東北大学金属材料研究所

The chromium spinel oxide $CdCr_2O_4$ is a typical example of a three-dimensional geometrically frustrated magneto. By applying a magnetic field at low temperature, it undergoes magnetic phase transition to the 1/2 magnetization plateau phase at around 28 T. In this work, we performed high-field optical spectroscopy measurements by using the high-field optical spectroscopy system for 30 T hybrid magnet. We observed the large change of the absorption spectrum at 30 T. It is probably attributed to the change of an exciton and a magnon dispersion in the 1/2 magnetization plateau phase.

Y. Sawada¹, S. Kimura¹, K. Watanabe¹ and H. Ueda²

¹ Institute for Materials Research, Tohoku University

² Department of Science, Kyoto University

クロムスピネル酸化物 CdCr₂O₄は3次元的な幾何学的フラストレート磁性体である. この物質 は、反強磁性秩序相において磁場を印加することで、28 T付近において1/2磁化プラトー相 へ転移を示す. 今回、30 T ハイブリッドマグネットで使用可能な強磁場分光装置を用いて、 可視領域における強磁場分光実験を行った結果、30 T の磁場において吸収スペクトルが大 きく変化する振る舞いが観測された. これは、1/2 磁化プラトー相転移に伴う磁気構造の変 化によって、エキシトンおよびマグノンの分散が変化したことに起因する振る舞いであると考 えられる.

澤田 祐也¹, 木村 尚次郎¹, 渡辺 和雄¹, 植田 浩明² ¹東北大学金属材料研究所,²京都大学大学院理学研究科