強磁場下における半導体中の転位・不純物反応 Dislocation-impurity interaction in semiconductors under magnetic field

東北大・金研 米永 一郎, 高橋 弘紀 I. Yonenaga, K. Taakahashi Institute for Materials Research, Tohoku University

1. はじめに

半導体の高性能化に向けた課題の一つデバイスの 機能である電気的・光学的特性の不均一性や劣化の 原因となる転位欠陥の発生と増殖を制御することで あり、実際その要請の元で半導体中の転位の動特性 に関する研究が広範に発展し、転位の運動に対する 熱(温度)、力、電流、光などの外場や、さらに例え ばシリコンでは酸素、ボロンなどの各種の不純物の 影響などが解明された [1,2]。その知識は今日の無転 位半導体結晶の育成や不純物との反応による欠陥制 御技術の基盤となっている。

半導体中の転位は原子間の結合が切れた状態であ り、バンドギャップ中にアクセプターないしドナー レベルを誘起する。そのため転位は種々の電気的特 性を示す。さらに、転位欠陥は電場の下でその運動 が促進され、またその自己増殖過程を通じて素子の 性能の劣化の引き金となる。これらの知識に比べ、 それらの電荷状態を伴う転位が磁場の影響のもとで どのような特性を示すかについては、これまで利用 可能な強磁場がないため、ほとんど調べられなかっ たが、近年イオン結晶における磁場下での軟化現象 からの類推で注目され始めている [3-6]。

われわれはシリコンや、青色発光・レーザー素子、 磁性半導体として開発されている窒化ガリウムなど 各種の半導体を対象に、転位の運動が磁場下におい て促進又は抑制されるか、さらに各種の不純物と転 位との相互作用が強磁場の影響を受けるかについて 実験・理論の両面から解明することを目的として研 究をスタートした。そして、昨年度までに、シリコ ン結晶について、その転位と主要不純物である酸素 およびリンとの相互作用を調べた。不純物酸素は転 位が発生中心からマクロに発生する過程で、転位に 優先的に集積し、析出物を形成することで転位を固 着し、結果、その発生を抑制することが知られてい る。そのような観点で、磁場強度を 10T のもとで、 室温、500°C、650°C、および 700°C において、処理 時間2時間までの磁場処理を施すと、転位が発生中 心から発生する段階で、上述の不純物酸素が転位に 集積して転位を固着する効果を低下させることを見 出した [7-11]。さらに、不純物リンについても、そ の磁場印加による転位固着現象を調べ、酸素不純物 とは特徴を異にするが、磁場強度の増加とともに転 位の固着力が増加することを得た [12]。

これらの研究は、転位欠陥の発生に対する不純物 の影響について、強磁場での事前処理がどのような 効果を有するかを評価したものであるが、磁場環境 下で実際に運動している転位はどのような影響を受けるか、興味が持たれる。実際昨年度は強磁場環境 での転位運動のその場実験を測定する装置を開発し、 運動速度の測定を行った。そして、シリコン結晶で は強磁場環境は運動中の転位に対しては影響しない ことを見出した [13]。

ただ、その過程で転位速度が装置的要因で低下し ていると過誤する挙動があること、逆にその現象を 使うとこれまで測定できなかった高温での帯磁率測 定が可能となりうることが推察された。ここではそ の結果について報告する。

2. 実験

実験では、最大荷重 20 N を負荷できる三点曲げ 変形試験装置(Fig. 1)を製作し、それを最高 800℃ まで加熱できる高温加熱装置内に装着し、東北大学 金属材料研究所強磁場超伝導材料研究センターの 10T-CSMのボア部分にセットした。なお、応力印加 ロッドにはアルミナないしステンレス鋼を利用した。

実験に用いた試料は、帯溶融 (FZ) 法で育成した 高純度シリコン結晶 (n 型、リン不純物濃度 2.5 × 10^{15} cm⁻³) であった。尚、結晶中に固溶した酸素濃 度は FZ 結晶では 10^{15} cm⁻³ 以下であり、一方 CZ 結 晶では 1.1×10^{18} cm⁻³ であった。

各結晶から大きさが2 mm×3 mm×16 mmの短冊状 の試料を切り出した。試料表面は (111) 面、長軸方 向は [1-10] に平行である。あらかじめ転位の発生中

Fig. 1. In-situ stressing system.

心となるように室温で試料表面中央に長軸方向に 沿ってダイヤモンド針で傷を導入した後、高温加熱 変形装置にセットし、それをさらに強磁場発生装置 内に装着した後、アルゴン気流中で、種々の磁場強 度下で高温に加熱し、所定の温度になった段階で、 所定の荷重を応力印加ロッドに加えることにより、 試料に応力を作用させた。所定時間後、除加重、室 温への冷却、磁場解除を行った。また、試料に荷重 を印加したまま加熱・冷却することも行った。 室温に冷却した後、それらの試料中の転位を検出す るために、クロム酸・フッ酸混合溶液に浸し化学腐 食した。それによって検出された転位について、最 初に導入した表面傷から移動した距離を光学顕微鏡 で測定することで、転位の発生と運動に関する動特 性を定量化した。

3. 実験結果と考察

転位はあらかじめ導入した表面傷から優先的に発 生する。Fig.2 は高純度の FZ シリコン結晶について、 応力印加ロッドとして、アルミナを利用した時の、 温度 650°C での応力と転位の運動速度の関係を示す。 運動速度は転位の表面傷からの移動距離を応力印加 時間で除して求めた。なお、図中の数値は印加され た磁場強度を示す。この図から、磁場を印加しない (0T)、3T、最大の9 T の場合について、応力と転位 速度の関係はほぼ重複しており、磁場環境は少なく とも9 T までにおいては、高純度のシリコン結晶中 の転位の運動に対して、影響しないと判断される。 実際転位の運動速度は従来から知られているように、 半導体結晶中を運動する転位の速度 v は次式(1)のよ うに応力 τ と温度 T の関数として記述することがで きる。

$$v = v_0 (\tau/\tau_0)^m \exp\left(-Q/k_{\rm B}T\right),\tag{1}$$

Fig. 2. Velocities of 60° dislocations in FZ-Si at 650° C as a function of the resolved shear stress. Effects of applied magnetic field intensity and applied load are shown.

Fig. 3. Velocities of 60° dislocations in FZ-Si crystals at 650° C as a function of the resolved shear stress at various intensities of an applied magnetic field. Open symbols show the dislocation velocities under application of a magnetic field in the reverse direction.

ここで、シリコン結晶では応力指数は従来から知ら れているように m≈1 である。すなわち、

$$v = (v_0/\tau_0) \exp(-Q/k_{\rm B}T)(F/A) = C (F/A)$$
(2)

となる。ここで、F は印加された荷重、A は試料の 断面積である。なお、A には荷重を応力へ換算する ための幾何学的係数も含む。これに対して、応力印 加ロッドとして、ステンレス鋼を利用すると、温度 650°C での応力と転位の運動速度の関係は著しく異 なり、顕著な磁場強度依存性が見出される。その結 果を Fig.3 に示す。すなわち、転位の運動速度の応 力に対する依存性は変わらないが、印加する磁場の 強度が高くなるほど、相対的に運動速度が低下する。 Fig.4 は温度 650°C、応力 30MPa の下で運動する転 位の速度について、磁場強度に対してどのように変 化するかを示す。図中で、白丸と黒丸は磁場の方向 が異なる場合の結果であるがあ、磁場の向きに影響 されないことが分かる。Fig. 2 で示すように磁場印 加では転位の運動速度は変化しないことから、Fig.3 と4で見出された運動速度の低下は応力を印加する ためにも用いたロッドの材質が磁性材料であること に起因すると判断される。すなわち応力印加用の ロッドに対する磁気浮揚の影響で試料に印加される 荷重(応力)が低下したためであると考えることが できる。磁気浮揚力を FL とすると、そのような状 態での転位の運動速度 v'は

 $v' = (v_0/\tau_0) \exp(-Q/k_{\rm B}T) (F-F_{\rm L})/A$

Fig. 4. Velocities of 60° dislocations in FZ-Si crystals at 650°C under a shear stress of 30 MPa as dependent on the intensity of the applied magnetic field. Open symbols show the dislocation velocities under application of a magnetic field in the reverse direction.

$$= C (F - F_L) / A \tag{3}$$

となり、したがって、転位速度の低下量 v は磁気浮 揚力 F_L と次の関係にある。

$$v = v - v' = CF_{\rm L}/A.$$
 (4)

 Fig. 4 において、転位速度の低下量 v は磁場強度

 B に対して

$$v = D B'', n \sim 2, \tag{5}$$

の関係が見出される。定数 C と D を実験的に決定す ると依存した磁気浮揚力を見積もることができる。 すなわち、 $F_L/A = 0.33 B^n$ となる。この結果は、磁場 強度が 10T になると、用いたシリコン試料の形状で は応力として 30MPa 程度になることが分かる。これ から磁気浮上力として 12N が見積もられる。

この現象を利用し、応力印加用ロッドを適切な大 きさと長さに選択し、その場所でのマグネットボア 内での磁場強度分布を正確に評価すると、高温での 帯磁率を評価することができると思われる。

4. まとめ

シリコン結晶での転位の運動特性について、強磁 場環境の影響をその場測定装置により調べた。装置 の設定により、転位の運動速度が強磁場の影響で低 下すると過誤することがあるが、逆に、その特徴を 解析すると、材料の高温での帯磁率を評価する上で、 有効な手段であることが推察された。 参考文献

- K. Sumino and I. Yonenaga, Solid State Phenomena 85/86, 145 (2002).
- [2] I. Yonenaga, Solid State Phenomena 95/96, 423 (2004).
- [3] E. V. Darinskaya, E. A. Petrzhik and S. A. Erofeeva, J. Phys.: Condens. Matter 14, 12883 (2002).
- [4] M. V. Badylevich, Yu. L. Iunin, V. V. Kveder, V. I. Orlov and Yu. A. Osipyan, Solid State Phenomena 95/96, 433 (2004).
- [5] V. I. Al'shits and E. V. Darinskaya, JETP Lett. 70, 761 (1999).
- [6] V. I. Al'shits, E. V. Darinskaya and M. V. Koldaeva, Phys. Solid State 43, 1703 (2001).
- [7] 米永一郎、兎澤逸平、高橋弘紀、東北大学金属 材料研究所強磁場超伝導材料研究センター平成 15年度年次報告書、p. 144.
- [8] 米永一郎、兎澤逸平、高橋弘紀、東北大学金属 材料研究所強磁場超伝導材料研究センター平成 16年度年次報告書、p. 151.
- [9] I. Yonenaga and K. Takahashi, J of Physics: Conf. Ser. 51, 407 (2006).
- [10] I. Yonenaga and K. Takahashi, J. Appl. Phys. 101, 053528 (2007).
- [11] I. Yonenaga, K. Takahashi, T. Taishi, and Y. Ohno, Physica B, 401-402, 148-150 (2007).
- [12] 米永一郎、高橋弘紀、東北大学金属材料研究所 強磁場超伝導材料研究センター平成 18 年度年次 報告書、p. 161.
- [13] 米永一郎、高橋弘紀、東北大学金属材料研究所 強磁場超伝導材料研究センター平成 19 年度年次 報告書、p. 138.