磁気電析におけるキラリティーの発現に関する研究 Onset of Chirality of Electrodeposited Film in the Magnetic Field

埼玉県企業局 森本 良一
職業大 青柿 良一, 高木 智士, 元村健太郎
早大・理工 杉山 敦史
東北大・金研 茂木 巖
R. Morimoto¹, R. Aogaki², S. Takagi², K. Motomura², A. Sugiyama³ and I. Mogi⁴
¹ Saitama Prefecture Enterprise Bureau
² Polytechnic University
³ Graduate School of Science and Engineering, Waseda University
⁴ Institute for Materials Research, Tohoku University

1. はじめに

電極面に対して垂直に磁場を作用させたときの電析 では、電解電流のゆらぎ[1]と磁場の相互作用による ローレンツ力が生み出す二つの渦流が重要な役割をす る。一つは電極上層部の電流線の広がりが生み出す ローレンツ力による竜巻状の回転運動(垂直 MHD (Magnetohydrodynamic) 流れ)であり、もう一つは電極 表面近傍における電解電流のゆらぎと磁場の作用によ り生じる微小渦流(マイクロ MHD 流れ)である[2].

その結果,この二つの渦流の効果から,マイクロミス テリーサークル(micro-mystery circle)と呼ばれる孔状形 態を持った析出面が現れる[3].これはマイクロ MHD 流 れの干渉により濃度ゆらぎの成長が妨害され,結果的 に孔部分の二次元核生成が抑制されるためであると考 えられる.つまり,平行磁場の場合と同じく第一マイクロ MHD 効果によるものである.

また, 茂木らは垂直磁気電析において作製した電極 が光学活性な電極反応に対してキラルな選択性を示す ことを見出すと同時に, この選択性がマイクロ MHD 流 れにより生じる電析表面のキラルな性質により生じること を示した[4].

青柿らの理論計算[5]によると、このような孔は二次元 核生成に伴うキラルな渦流が、巨視的な回転運動と電 析反応時に生じるイオン空孔[6]による滑り効果がもたら す歳差運動で生み出されることが判明した.そして、巨 視的な回転として、垂直 MHD 流れが生じる系において マイクロミステリーサークルが形成されることについては、 高木らにより明らかにされた[7].

ここでは、以上の検討結果を実験的に確認するため に、垂直 MHD 流れの代わりに溶液を含めた電解槽全 体を回転させて微視的な渦流に歳差運動を与えること を試みた.実際にマイクロミステリーサークルが生成する 過程について検討した結果について報告する.

2. マイクロミステリーサークルの形成

マイクロミステリーサークルの形成について,理論的に は無限に広がった溶液中に一対の無限に水平な電極 が存在し,溶液を含めた電極全体が均一な垂直磁場中 で回転している系を考える.渦の集団を考えると,荷電 粒子と同じように異なる回転方向を持つ渦同士は引き 合うので,固体表面上に生じる一対の渦では上昇流を

反時計回りとすると、下降流は時計回りとなってキラルな 対称性が保たれる. そして, 非平衡ゆらぎの不安定化 による渦運動の自己組織化過程を理論計算すると摩擦 のある表面(rigid surface)と摩擦のない面(free surface) では渦の回転が逆になることが分かった.これは,摩擦 により rigid surface 上では溶液は電極面と同じ方向に 回転しようとするのに対し, 摩擦の無い free surface で はすべりにより電極面と反対方向に溶液が回転しようと するためである. ここで電極面は当然 rigid surface なの で、摩擦の無い free surface が生まれるには特別な潤 滑剤が必要となる. その役割を担うのが, 近年電析にお いて見つかったイオン空孔である. これは半径 0.4 nm 程度のマイナスに帯電した真空部分をプラスのイオンの 雲が覆っている構造をとり、 金属イオンが還元されるとき に生じる静電的不均衡が引き金となり生じると考えられ ている[6]. 最近注目されているナノバブルについては その良好な潤滑性が実験的に明らかになっているので [8], イオン空孔についても原子レベルのスケールで同 じ役割を期待できる.

Fig. 1 Formation of free and rigid surfaces by vacancies. a; upward flow at free surface, b; downward flow at rigid surface, \circ ; ionic vacancy.

Fig. 2 Appearance of chirality by the path of a fluid particle. a; rigid surface (no transcription of vortex pattern), b; free surface (transcription of vortex pattern), \circ ; ionic vacancy.

イオン空孔は電析とともに作られるが、Fig.1に示すよ うに, 上昇流では流れの中心に集められるのに対して, 下降流では中心から周囲に追いやられてしまう. つまり, 空孔による free surface は上昇流だけに生じ,下降流 は rigid surface だけに限定される. このことと, rigid 及 び free の 2 つの表面では渦の回転が逆になることを組 み合わせ,電極系の回転が時計回りに起こると仮定す ると, Fig. 2 のように free surface から上昇した反時計回 りの渦は時計回りの渦となり rigid surface へ下降する. このとき電極表面では rigid surface の渦は摩擦で消滅 し free surface の渦だけが生き残るので、ここで渦の対 称性が破れることになる. そして生き残った free surface の渦が,巨視的な回転によるコリオリカを受けて歳差運 動を起こすことによりマイクロミステリーサークルを形成 する. このような考察から、マイクロミステリーサークルが 理論計算結果として再現された[5].

3. 回転槽装置の作製

巨視的回転として垂直 MHD 流れの代わりとして電解 槽全体を回転させるために,回転電解槽装置を作製し た[9].電極は,作動極と対極からなる一対の銅製水平 平板電極を,自然対流を防止するために上部下向きの 電極を作動極として電解槽に固定した.電解槽全体を 超電導磁石の常温ボア空間内に吊り下げ,非磁性超音 波モーターを使用して電解槽全体を回転させた.そし て,垂直 MHD 流れを抑制するための物理的ガイドとし て電極面上に鞘(さや)状の空間ガイドを設けた.電解 槽全体を回転させることにより垂直 MHD 流れの代わり となる巨視的回転を与え,マイクロ MHD 流れに歳差運 動を起こさせることで,析出イオン輸送を行わせることが 出来るようにしている.

4. 実験方法

作製した回転電解槽装置を用いて、マイクロミステ リーサークルの作製を行った.溶液として、硫酸銅 250 mol m⁻³と硫酸 500 mol m⁻³からなる硫酸銅溶液を用い て、実験に先立ちアルゴンガスにより溶存酸素除去を 行った.照合極には直径 1 mm の銅線を用いた.イオン 空孔が生成する過電圧-0.4 V 一定で 10 分間の電析後、 走査型電子顕微鏡で析出表面を観察した.一部は、断 面形状測定を行った.室温において、各磁束密度、各 回転速度で槽全体を反時計回り(電極表面で見ると時 計回り)に回転させて実験を行った.

5. 結果および考察

5-1. マイクロミステリーサークルの作製

磁束密度1T,回転速度1Hzの条件で作製したマイ クロミステリーサークルの観察結果をFig.3に示す.同 心円状の平坦な底部を持つ,特徴的な形状であること を示している.電極表面でfree surfaceの渦だけが生き 残るということを示している.つまり,金属イオンは渦運 動を保持したまま原子レベルで析出面に転写されること を意味している.このことは,巨視的な回転がミステリー サークル形成に関与することを示している. 5-2. マイクロミステリーサークルの実験条件依存性

磁束密度1Tまたは4T,回転速度2Hzの条件で作 製したマイクロミステリーサークルの観察結果をFig.4に 示す.Fig.4aの1Tにおいて回転速度を増加させると, Fig.3の結果と比べて径が大きくなることが示されてい る.このことから,同一磁束密度において回転速度依存 性があることが分かる.また,Fig.4のaとbを比較すると, 磁束密度の増加によっても径が増加していることが観察 された.つまり,5T程度までの磁束密度領域において は,磁束密度依存性があることを意味している.

Fig. 3 Formation of micro-mystery circle by the rotation electrolysis cell device. Deposition condition is B = 1 T, f = 1Hz. a ; SEM image, b ; cross-sectional shape.

Fig. 4 Formation of micro-mystery circle by various conditions. a ; B = 1 T, f = 2 Hz, b ; B = 4 T, f = 2 Hz.

参考文献

- [1] M. Asanuma, A. Yamada, and R. Aogaki, Jpn. J. Appl. Phys., 44, 5137 (2005) など.
- [2] 青柿良一, Electrochemistry, 73, 454 (2005).
- [3] A. Sugiyama, M. Hashiride, R. Morimoto, Y. Nagai, and R. Aogaki, Electrochim. Acta, 49, 5115 (2004).
- [4] I. Mogi, and K. Watanabe, Jpn. J. Appl. Phys., 44, L199 (2005) など.
- [5] 青柿良一, 森本良一, 杉山敦史, 浅沼美紀, 第4回 日本磁気科学会年会要旨集, p. 60 (2009).
- [6] R. Aogaki, Electrochemistry, 76, 458 (2008) など.
- [7] 高木智士,元村健太郎,杉山敦史,森本良一,青 柿良一,第5回日本磁気科学会年会要旨集,p.100 (2010).
- [8] E. Bonaccurso, H. J. Butt, and V. S. J. Craig, *Phys. Rev. Lett.*, **90**, 144501 (2003).
- [9] 森本良一,高木智士,浅沼美紀,杉山敦史,茂木 巖,青柿良一,表面技術協会第123回講演大会要 旨集, p. 138 (2011).