MgB₂/Ni 多層薄膜の強磁場下における磁東ピンニング特性 Flux pinning properties of MgB₂/Ni multilayered thin films in high magnetic fields

熊本大·大学院自然科学研究科 藤吉 孝則, 梶田 龍, 米倉 健志, 末吉哲郎
鹿児島大·工学部 土井 俊哉
物質材料研究機構 北口 仁
東北大·金研 淡路 智, 渡辺 和雄
T. Fujiyoshi¹, R. Kajita¹, K. Yonekura¹, T. Sueyoshi¹, T. Doi2, H. Kitaguchi³, S. Awaji⁴, K. Watanabe⁴

¹ Fujiyoshi , K. Kajita , K. Yonekura , T. Sueyoshi , T. Dol2, H. Kitaguchi , S. Awaji , K. Watanabe ¹ Graduate School of Science and Technology, Kumamoto University ² Faculty of Engineering, Kagoshima University ³ National Institute for Material Science

⁴ Institute for Materials Research, Tohoku University

1. はじめに

電子ビーム蒸着法[1]で作製された MgB₂ 超伝導薄 膜は,柱状結晶が成長するため結晶粒界がピンニング として働き,膜面に垂直な方向の磁場に対して,高い臨 界電流密度 J_cを示すことが報告されている[2].また,酸 素中雰囲気中で成膜することにより,その結晶粒界に 沿って MgO が導入され,結晶粒界による磁束ピンニン グが強化されることにより J_cが向上することも報告されて いる[3,4].しかし,印加磁場方向による J_cの大きな異方 性を無くすためには膜面に対して平行に磁場を印加し たときの J_cの向上も望まれる.

本研究では、膜面に平行に磁場を印加した場合の J_c の向上を目的として、 MgB_2/Ni 多層薄膜を電子ビーム 蒸着法で Si 基板上に作製した. Ni は強磁性を示すため、この層は強い磁束ピンニングとして働くことが期待される. 特に、量子化磁束の格子間隔とNi層の間隔が一致する磁場は効率良く磁束ピンニングできると考えられることから、この磁場をマッチング磁場 B_{ϕ} と定義する. Ni 層による磁束ピンニング効果を調べるために、様々な温度・磁場範囲において J_c の磁場依存性および印加磁場角度依存性を測定した. また、電界 – 電流密度(*E-J*)特性の測定を行い、磁束ピンニング特性の評価を行った.

2. 実験方法

電子ビーム蒸着法を用いて MgB₂/Ni 多層薄膜を Si 基板(100)上に作製した[5]. また Ni 層は同軸アーク蒸 着法を用いて堆積させた. 作製前の背圧は 5×10⁻⁷Pa で あり, ハロゲンランプヒータを用いて基板を250°Cに加熱 した. 成膜レートは Mg:B=2:0.7(nm/s)とし,膜面に平行な 磁場に対するピンニングセンターとして導入した Ni 層は 0.01nm/pulse とした.

Si 基板上に MgB₂層を 24.4nm, Ni を 0.3nm, 13 サイ クル積層させたものを試料 S1 (B_{ϕ}=3T).また, MgB₂層を 15.0nm, 20 サイクル積層させたものを試料 S2(pure)と した. S1 (B_{ϕ} =3T) 試料, S2(pure)試料の合計の膜厚は それぞれ 280nm, 300nm であった.また,作製した S1 (B_{ϕ} =3T) 試料および S2(pure)試料の超伝導転移温度 T_cは, それぞれ 23.0K および 32.8K であった.このよう に Ni 層の導入により,著しくT_cが低下する.

製膜後の試料はフォトリングラフィーにより幅 50µm,

長さ1mmのブリッジ状にパターニングした.四端子法により *E-J* 特性の測定をし、電界基準を10 μ V/cmとして *J*。を定義した.*J*。の磁場依存性や磁場角度依存性を測定した.また、様々な温度・磁場範囲において *E-J* 特性の測定を行い、パーコレーション遷移モデルを適用して導出した磁束グラス-液体温度 *T*g や *m* 値より磁束ピンニング特性の評価を行った.測定時の温度精度は±0.03K 以内であった.

3. 結果および考察

Fig. 1 に J_c の磁場依存性を示す.温度 T=10K で,膜面に対してそれぞれ垂直,平行に磁場を印加している. 膜面に対して磁場を垂直に印加した場合は S1($B_{\phi}=3T$) 試料, S2(pure)試料ともに磁場の増加とともに J_c は単調 に減少した.一方,膜面に対して平行に磁場を印加し た場合, S1($B_{\phi}=3T$)試料においてマッチング磁場 3T付 近でのピークが見られる.S2(pure)試料においては膜面 に対して垂直に磁場を印加した場合と同様にこのような 顕著な変化は見られなかった.従って,S1($B_{\phi}=3T$)試 料にこれよりマッチング磁場付近で有効なピンニングセ ンターが導入されたと考えられる.

Fig. 2 に J_c の磁場角度依存性を示す. θ =0°は磁場を 膜面に対して垂直に印加した場合であり, θ = 90°は膜 面に平行に磁場を印加した場合に対応する. S1

Fig. 1 Magnetic field dependences of $J_{\rm c}$.

Fig. 2 Angular dependences of J_c .

 $(B_{\phi}=3T)$ 試料において $\theta=90$ °付近での J_{c} の著しいピー クが見られる. 一方, S2(pure)試料においては結晶粒界 によるピンニングと思われる $\theta=0$ °付近でのピークが見ら れる. これより S1($B_{\phi}=3T$)試料において Ni 層の導入に より, 膜面に平行に印加された磁場に対して有効なピン ニングセンターが導入されたことが判る.

 $T_g \ge m$ 値の磁場依存性を調べるために、印加磁場を 変化させて *E-J* 特性を測定した. Fig. 3 に S1 (B_{ϕ} =3T) 試 料における *B*=1T, 膜面に垂直に磁場を印加したときの *E-J* 特性を示す. 両対数プロットした *E-J* 特性は、低温 領域では上に凸の曲線となっているが、温度の上昇に 伴いある温度を境として下に凸の曲線へと変化する. こ の境となる温度は磁束グラスー液体転移温度 T_g と呼ば れる. このような特徴的な *E-J* 特性の振る舞いは YBa₂Cu₃O_{7-δ}などの高温超伝導体において観測される 特徴と同じである.

高温超伝導体の E-J 特性はピンカの統計的分布を 考慮したパーコレーション遷移モデル(ディピニングモデ ル)によって定量的に記述できることが知られている [6-8]. また, MgB₂ 薄膜における E-J 特性もパーコレー ション遷移モデルによって表せることも報告されている [9]. パーコレーション遷移モデルでは,分布した要素的 ピンカに基づく局所的な臨界電流密度 J_{cl} の確率密度 分布 関数 P(J_{cl})として,信頼性工学で用いられる Weibull 関数を用いている.

このモデルにおいて、 J_{cl} の分布は三つのピンニング パラメータ J_{cm} 、 ΔJ_c 、m 値によって特徴づけられる.ここ で、 J_{cm} は局所的臨界電流密度の分布の最小値、 ΔJ_c は 分布の幅、m は分布の形を特徴付けるパラメータである. なお局所的がピン止め力がばらついていると J_{cl} の分布 は立ち上がりが緩やかでなだらかな分布となりm値が小 さくなる.一方、局所的なピン止め力がそろっていると、 立ち上がりが急で鋭い分布となりm値は大きくなる.この 局所的臨界電流密度の分布関数 $P(J_{cl})$ から、E-J特性 は次式のように表される.

Fig. 3 *E-J* characteristics in the magnetic field of B=1T.

Fig. 4 Magnetic field dependences of (a) $T_{\rm g}$ and (b) *m*-value.

$$E = \rho_{\rm FF} \int_{J_{\rm cm}}^{J} (J - J_{\rm cl}) P(J_{\rm cl}) dJ_{\rm cl}$$

$$= \begin{cases} \frac{\rho_{\rm FF} \Delta J_{\rm c}}{m+1} \left(\frac{J - J_{\rm cm}}{\Delta J_{\rm c}}\right)^{m+1} \text{ for } T < T_{\rm g} \\ \frac{\rho_{\rm FF} \Delta J_{\rm c}}{m+1} \left(\frac{J}{\Delta J_{\rm c}}\right)^{m+1} \text{ for } T = T_{\rm g} \\ \frac{\rho_{\rm FF} \Delta J_{\rm c}}{m+1} \left\{ \left(\frac{J + |J_{\rm cm}|}{\Delta J_{\rm c}}\right)^{m+1} - \left(\frac{|J_{\rm cm}|}{\Delta J_{\rm c}}\right)^{m+1} \right\} \text{ for } T > T_{\rm g} \end{cases}$$

ここで, ρ_{FF} は磁東フロー抵抗である. 実験より得られた *E-J* 特性をパーコレーション遷移モデルによる上式と フィッティングを行った. フィッティングでは実験値と理論 値の誤差が最も小さくなるようにピンニングパラメータ J_{cm} , ΔJ_c , *m* 値を決定した. Fig. 3 においてシンボルが実 験値, 実線が理論値を示しており, 両者はよく一致して いる.

Fig. 4 (a), (b)にパーコレーション遷移モデルから得ら れた S1 (B_{ϕ} =3T) 試料とS2(pure)試料の T_{g} とmの磁場依 存性を示す. Fig. 4 (a)に示した T_{g} の磁場依存性より, S1 (B_{ϕ} =3T) 試料, S2(pure)試料とも膜面に平行, 垂直に 磁場を印加した場合において直線的に変化しており異 常な振る舞いは見られなかった. S2(pure)試料では印 加磁場角度で T_{g} にほとんどに差が見られず, S1 (B_{ϕ} =3T) 試料では膜面に磁場を平行に印加した場合に T_{g} が膜面に垂直に印加した場合と比べて著しく高くなって いた.

m値の磁場依存性では, 膜面に磁場を平行に印加した場合において S2(pure)試料では異常な変化は見られなかったが, S1(B_{ϕ} =3T)試料にマッチング磁場を境にm値の傾きに変化が見られた.一方, 膜面に垂直に磁場を印加した場合には両試料ともm値に変化は見られなかった.

これは、Fig. 5 (a)に示すように、マッチング磁場以下 ではNi層に磁束が全て捕らえられm値が高くなり、Fig. 5 (b)に示すようにマッチング磁場付近では効率よく磁束 がピンニングされているためと考えられる.しかし、Fig. 5 (c)に示すように外部磁場がマッチング磁場以上になる と、磁束密度の関係上Ni層とNi層の間に磁束が存在 してしまう.そのためにピンニング効率が低下したと考え られる.このような理由によりm値の傾きにマッチング磁 場を境に変化が見られたと考えられる.

4. まとめ

電子ビーム蒸着法を用いて MgB₂/Ni 多層薄膜を作製 した. 膜面に対して平行に磁場を印加したときの J_c 向上 を目的としてNi層をピンニングセンターとして導入した. Ni 層の効果とその磁束ピンニング特性を調べるために, J_c の磁場依存性や J_c の磁場角度依存性を測定した.ま た,様々な温度・磁場範囲において *E-J* 特性の測定を 行い,パーコレーション遷移モデルを適用し導出した T_g とm値より磁束ピンニング特性の評価を行った.

J_cの磁場依存性から膜面に平行に磁場を印加した場

合においてマッチング磁場付近で J_c の向上が見られた. J_c の磁場角度依存性において θ = 90°での鋭いピークが 見られた. T_g の磁場依存性より S1 (B_{ϕ} =3T) 試料は膜面 に平行に磁場を印加した場合において膜面に垂直に 磁場を印加した場合よりも T_g が向上していたが, S2(pure)試料は印加磁場角度による T_g の変化は見られ なかった. m 値の磁場依存性より、S1 (B_{ϕ} =3T) 試料は膜 面に磁場を平行に印加した場合においてマッチング磁 場を境にグラフの傾きに変化が見られた. これらより、Ni 層が膜面に平行に磁場を印加した場合においてマッチ ング磁場付近で有効なピンニングセンターとして働くこと が分かった.

Fig. 5 Pattern diagrams of flux pinning (a) $B \le B_{\phi}$ (b) $B = B_{\phi}$ (c) $B \ge B_{\phi}$

参考文献

- M. Okuzono, T. Doi, Y. Ishizaki, Y. Kobayashi, Y. Hakuraku and H. Kitaguchi: IEEE Trans. Appl. Supercond. 15 (2005) 3253.
- [2] H. Kitaguchi, T. Doi, Y. Kobayashi, A. Matsumoto, H. Sosiati, S. Hata, M. Fukutomi, H. Kumakura: IEEE Trans. Appl. Supercond.15 (2005) 3313.
- [3] M. Haruta, T. Fujiyoshi, T. Sueyoshi, K. Miyahara, T. Doi, H. Kitaguchi, S. Awaji, K. Watanabe: Supercond.Sci. Technol. 18 (2005) 1460.
- [4] 春田正和,藤吉孝則,末吉哲郎,宮原邦幸,土井 俊哉,北口仁,淡路智,渡辺和雄:低温工学 40 (2005) 473.
- [5] K. Fukuyama, T. Doi, H. Kitaguchi, Z. Mori, K. Masuda, Hamada, Y. Hakuraku: IEEE Trans. Appl. Supercond. 17 (2007) 2891.
- [6] K. Yamafuji and T. Kiss: Physica C 258 (1996) 197.
- [7] K. Yamafuji and T. Kiss: Physica C 290 (1997) 9.
- [8] K. Yamafuji, T. Fujiyoshi and T. Kiss: Physica C 397 (2003) 132.
- [9] M. Haruta, T. Fujiyoshi, T. Sueyoshi, K. Miyahara, T. Doi, H. Kitaguchi: Physica C (2005) 426-431 (2005) 174.