φ 400-20T 超伝導マグネットの小型化検討 Design Study of φ 400-20T Compact Superconducting Magnet

(株)東芝 花井 哲,木村 諭,小野 通隆,小柳 圭
東北大学 渡辺和雄,淡路 智,西島 元,濱島高太郎
物質・材料研究機構 木吉 司,熊倉 浩明

S. Hanai^A, S. Kimura^A, M. Ono^A, K. Koyanagi^A, K. Watanabe^B, S. Awaji^B,

G. Nishijima^B, T. Hamajima^C, T. Kiyoshi^D, H. Kumakura^D

^AToshiba Corporation

^B Institute for Materials Research, Tohoku University

^C Department of Electrical and Communication Engineering, Tohoku University

^D National Institute for Materials Science

1. はじめに

材料創製,たんぱく質の構造解析への利用,さらに新 しい強磁場超伝導線材の開発には、より高い定常磁場 を発生するマグネットが求められる。これまでに、45T級 ハイブリッドマグネット用 φ 400-20T超伝導マグネットの 設計検討を行い、超伝導線と補強線による高強度撚り 線導体を用いたコイル設計を行った[1]。また、ダミー 撚り線導体を用いたコイル試巻線を実施し、巻線性の 検証を実施した[2]。この結果、高強度撚り線導体を大 型の強磁場マグネットに適用することは有効であるもの の、単線の場合と比較して 20%程度導体占積率が低下 するため、マグネットが大型化するという課題があること も明らかになった。

に,高強度撚り線導体の臨界電流特性を測定したので, 報告する。

2. φ400-20T 超伝導マグネットの小型化試設計

内層高磁界部に臨界電流 245A/cm^w@77K,自己磁 場の YBCO 線材を採用し、 φ400-20T 超伝導マグネッ トの小型化検討を行った。その結果のコイルパラメータ を Table 1 に示す。Table 1 に示すように、超伝導マグネ ットは YBCO コイル 3 層, Nb₃Sn コイル 2 層, NbTi コイ ル 2 層の、計7 層構成で、巻線部の概略形状は φ1080 ×1140 となった。また、通電電流 903A 時に中心磁場 20.0T を発生し、磁気エネルギーは 72MJ である。

Fig. 1 にコイル赤道面上での磁場分布と新・旧のコイ ル断面形状を示す。YBCO線材の採用により、コイル平 均電流密度が向上し、超伝導線材量、磁気エネルギー での比較では、従来設計の約 50%となり、内層コイルに YBCO線材の採用がコイル小型化に有効であることが

Coil ID		L1	L2	L3	L4	L5	L6	L7
Superconductor			YBCO		Cu-CuNb/I	Vb3Sn+SUS	Cu/Nb	Ti+SUS
Tape/Strand Size	mm	0.2 × 7.3	0.2 × 7.3	0.2 × 7.3	φ1.07	ϕ 0.91	ϕ 1.26	ϕ 0.96
Construction of conductor	-	1+6	1+6	1+6	(4+5)	(4+5)	(3+4)	(3+4)
Conductor Length	m	2005	2852	3810	7898	13285	9841	18615
Inner radius	mm	220.0	257.8	295.5	333.3	390.0	446.0	494.6
Outer radius	mm	252.8	290.5	328.3	385.0	441.0	489.6	539.9
Coil height	mm	622.5	763.6	896.4	1041.5	1141.0	1138.3	1138.4
Operating current	А	903	903	903	903	903	903	903
Current density of conductor	A/mm ²	88.4	88.4	88.4	94.7	131.0	103.5	178.2
Magnetic field contribution	Т	1.96	2.00	2.02	3.14	4.09	2.58	4.23
Maximum field	Т	20.69	18.45	16.23	14.01	10.58	8.45	7.53
Operating temperature	К	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Hoop stress	MPa	402	420	424	442	541	272	251

Table 1 Designed Parameters of the ϕ 400-20T Superconducting Magnet for 50T Class Hybrid Magnet

Fig.1 ϕ 400-20T Superconducting Magnet for 45T Class Hybrid Magnet

3. 撚り線導体の臨界電流特性

臨界電流測定は, Fig.2 に示す(3+4)構成の撚り線導体(React & Wind)を用い, Table 2 および Fig. 3 に示す 3ターンコイルを作製して実施した。3 ターンコイルの導体は, 口出し端部だけを電極に半田付けしており, 臨 界電流測定部の導体はエポキシ含浸などを行わず, 電磁力に対してフリーな状態となっている。測定は, 初め に電磁力がコイル内向き(導体圧縮状態)となる方向に 通電して測定した後, 電磁力が外向きになる方向(フー プ応力状態)に通電して行ったものである。測定結果を Fig. 4 に示す。

測定された臨界電流は電磁力の向きや繰り返しで大 きな変化はなかったが,素線臨界電流の本数倍に対し, 約 6 割の値であった。現時点では,この差異が導体製 作時に発生したものかコイル製作時に発生したものか 不明であるが,今後明らかにする必要がある。

(3+4)Conductor

Fig. 2 Structure of Twisted Conductor

Table 2 Parameter of 3	Turns	Coil
------------------------	-------	------

Inner Diameter	φ 2 62		
Height	30		
Turn	3		
Conductor Length	$\sim 2.5 \mathrm{m}$		

Fig. 3 Three Turns Coil

Fig. 4 Critical Current of Twisted Conductor

4. まとめ

内層高磁界部にYBCO線材を使用した φ 400-20T 超 伝導マグネットの設計検討を行った。検討結果の超伝 導マグネットは YBCO コイル 3 層, Nb₃Sn コイル 2 層, NbTi コイル 2 層,計 7 層のコイル構成となった。内層コ イルに YBCO線材を採用することにより、導体占積率, 空間電流密度が改善し、従来設計と比較すると超伝導 線材量,磁気エネルギー共に、従来設計の約 50%とな っており、内層コイルに YBCO線材を採用することがコ イル小型化に有効であることが確認された。

撚り線導体の臨界電流測定では、素線臨界電流の本 数倍に対し、約 6 割の値となった。今後、コイル製造上 の問題がないか明らかにしていく必要がある。

参考文献

- 1)花井他:2006 年度秋季低温工学・超電導学会 1B-p02
- 2)花井他:東北大学金属材料研究所強磁場超伝導材 料研究センター 平成 18 年度年次報告 P206