MgB₂バルク超伝導体の磁東ピンニング特性に関する研究

Flux pinning properties in MgB₂ bulks

九工大・情報工 木内 勝 東大・工 山本 明保 東北大・金研 淡路 智 M. Kiuchi¹, A. Yamamoto² and S. Awaii³

¹Department of Computer Science and Electronics, Kyushu Institute of Technology ²Department of Applied Chemistry, University of Tokyo

³Institute for Materials Research, Tohoku University

1. はじめに

 MgB_2 は金属超伝導体の中でも 40 K 程度と最も高 い臨界温度 T_c を持ち、更に酸化物超伝導体のような 結晶粒間での臨界電流密度 J_c の劣化が少ないことが よく知られている。また、原材料の価格が低いこと も MgB_2 の大きな利点であり、線材を用いた様々な 応用への利用が期待されている[1,2]。線材加工とし て、Mg と B の混合粉末を用いる *in-site* 法と MgB_2 の化合物粉末を用いる *ex-site* 法の 2 つの方法がある が、これらの手法からまだ十分な臨界電流密度 J_c が 得られていない。このような特性となるのは MgB_2 の低い充填率と、結晶界面に存在する酸化膜による もので[3,4]、充填率の向上や酸化膜の除去するため の様々な手法が検討されている。

一方で MgB₂ での主要なピンは結晶粒界であることから、結晶の粒径の微細化や、添加による結晶の 歪の導入などの様々な手法も試みられている。但し、 この結晶界面ピンは要素的ピン力の強化ばかりでな く、上部臨界磁界 B_{c2}の増加に伴う不可逆磁界 B_iの 向上の影響も含まれる。更に、MgB₂はマルチギャッ プ超伝導体であることから、磁束ピンニングを決定 する重要なパラメータである上部臨界磁界 B_{c2} がそ の影響を受ける可能性がある[5]。したがって、今後 の更なる特性改善のためにも、J_cの決定機構の解明 が必要である。

本研究は、低温生成及び不純物添加した MgB₂ バ ルクに注目し、広い温度領域の臨界電流密度 J_c及び 上部臨界磁界 B_{c2}を測定し、MgB₂の磁束ピンニング 機構について調べた。

2. 測定

測定に用いた試料は MgB_2 の熱処理としては低い 600℃の低温生成と、C 添加として B_4C 及び SiC を 加えた 3 つの MgB_2 バルク体で、いずれも PICT 法[6] で作製した。熱処理後 SUS シース材を MgB_2 から剥 離し、磁化法におよそ 1.5 mm × 1.5 mm × 0.5 mm、

TT 1 1 1	G .C.		• •
Table 1.	Sneciti(cations of	snecimens
rable r.	opeenin	cations of	specificitis

	仕込み組成	焼成条件	臨界温度 T _c [K]
#2	MgB_2	600°C, 24h	38.2
#3	MgB _{1.50} (B ₄ C) _{0.10}	850°C, 3h	35.4
#4	MgB _{1.80} (SiC) _{0.20}	850°C, 3h	35.5

通電評価ではおよそ 3 mm × 0.6 mm × 6 mm に整形 した。仕込み組成、焼成条件及び臨界温度 *T* を Table 1 に示す。

臨界電流密度 J_c は東北大学強磁場超伝導材料研究 センターの 18T-SM と組み合わせた引き抜き法磁化 測定装置を用いて、 $4.2 \sim 28$ K, $-5 \sim 15$ T の範囲の 直流磁化から求めた。また、不可逆磁界 B_i はピン力 密度 F_p がゼロとなる磁界で定義した。

また上部臨界磁界 B_{c2} を評価するために、直流四端子法を用いて磁場中の抵抗率の温度依存性を測定した。上部臨界磁界 B_{c2} は 40 K の抵抗率の 90%となる温度及び磁界で定義した。更に不可逆磁界 B_i を 40 K の抵抗率の 10%となる温度及び磁界で定義した。

3. 結果及び検討

Fig. 1 に#3 のピン力密度 F_p の温度スケール則を示 す。特に高温度領域のピン力密度 F_p はこの結晶界面 ピンニングの磁界依存性で説明できることが報告さ れており[7]、今回の測定でも同様な結果となった。 一方で温度の低下と共にピン力密度の最大値 F_{pmax} が低磁界側に移動し、全体の磁束ピンニング特性も

Fig. 1 Scaling law of the pinning force density of specimens #2.

ユニバーサルな曲線からはずれることがわかる。こ のような振る舞いは、3つの試料で共通で20K近傍 を境に生じる。特に今回用いた試料では、#4がより 大きくはずれた。これは高温度領域と低温度領域で の磁束ピンニング機構が異なることを示している。

Fig. 2 にピン力密度 F_P がゼロとなる磁界で定義した不可逆磁界 B_i の温度依存性を示す。#2 の 600℃熱処理試料に比べて、C 添加の#3 と#4 の B_i が高いことわかる。更に、C 添加でも#3 と#4 の温度依存性が多少異なり、高温領域では#4 の方が大きいが、 $T/T_c = 0.5$ (およそ 20 K)近傍から#3 の方が大きくなる。

Fig. 3 にピン力密度の最大値 F_{pmax} と不可逆磁界 B_i の関係を示す。点線は高温度領域の依存性で $F_{pmax} \propto B_i^2$ の関係を表す。20 K 近傍を境に高温度領域と低温度領域でその依存性が大きく変化して、磁束ピンニング機構が変化していることがわかる。この傾向は熱処理やC 添加試料でもほとんど同様な振る舞い

Fig. 2 Temperature dependence of the irreversibility field B_i .

Fig. 3 Relationship between the maximum pinning force density $F_{p(max)}$ and the irreversibility field B_i .

となる。一般的に、温度の低下と共にコヒーレンス 長が減少することにより、磁束線がピン止め効率が よりよい点状ピン等へ変化することによりその依存 性が変化する可能性があるが、その場合は、ピン力 密度の最大値 *F*_{pmax} と不可逆磁界 *B*_iの両方の特性向 上が予想される。しかし今回の実験結果は、ピン力 密度の最大値 *F*_{pmax}の増加に比べて不可逆磁界 *B*_iの 増加が大きくなっており、簡単に温度低下による主 要なピンの変化によるものではない可能性がある。

そこで、このようなピン力密度の変化を調べるために不可逆磁界 B_iの決定で重要なパラメータである、 上部臨界磁界 B_{c2} を特にピン力密度の温度スケール 側のはずれが大きい C 添加した試料について評価した。Fig. 4 に試料#3 と#4 の磁界中の抵抗率の温度依 存性を示す。また、Fig. 5 にその抵抗率の温度依存性 から求めた不可逆磁界 B_iと上部臨界磁界 B_{c2}温度依存

Fig. 4 Temperature dependence of the resistivity in 0-17 T for #3 and #4 specimens.

Fig. 5 Temperature dependence of the upper critical field B_{c2} and the irreversibility field B_i for #3 and #4 specimens.

性を示す。はじめに 40 K の抵抗率の 10%で定義した 不可逆磁界 B_i 'に注目すると、 T_c 近傍では#4 の不可逆 磁界 B_i 'が高いが、温度の低下と共に#3 の不可逆磁界 B_i 'が#4 の不可逆磁界 B_i 'に漸近することがわかる。この 傾向は決定の基準の違いにより不可逆磁界 B_i の定量 的な違いはあるが、Fig. 2 の不可逆磁界 B_i 'の結果と 定性的に一致する結果となった。また、同じ C 添加 でも磁束ピンニングに作用する効果は異なることがわか る。

次に上部臨界磁界 B_{c2} に注目すると、今回測定を 行った磁界範囲では、#3 に比べて#4 の方がすべての 温度領域で大きくなった。但し、ピン力密度のスケール 則が変化しはじめる 20K 近傍から#3 の上部臨界磁界 B_{c2} の温度依存性がわずかであるが大きくなっており、 #4 に漸近する傾向にある。したがって、上部臨界磁界 B_{c2} の増加による不可逆磁界 B_i の増加が確認できる。 したがって、これらの結果からピン力密度 F_p の温度ス ケール則の変化は温度低下に伴うピン力の変化と不可 逆磁界 B_i を通した上部臨界磁界 B_{c2} の変化による可能 性がある。

今回の測定範囲では MgB_2 のマルチギャップに起因 した上部臨界磁界 B_{c2} の顕著な上昇は測定できなかっ たが、ピン力密度 F_p の温度スケール則が変化しはじめ る 20 K 近傍から、上部臨界磁界 B_{c2} 及び不可逆磁界 B_i の温度依存性の変化が確認できた。

ピン力密度 F_p の温度スケールのズレも温度低下と共により顕著となるため、上部臨界磁界 B_{c2} とのより詳細な関係を明らかにするためには上部臨界磁界 B_{c2} の更なる低温度領域の測定が必要である。

4. まとめ

 MgB_2 の広い温度及び磁界領域の磁束ピンニング特性を調べるために、15 Tの磁界下での磁化測定を行い、 臨界電流密度 J_c を評価した。ピン力密度 F_p の温度ス ケール則から、20K 近傍からピンニング機構が変化した。 また、磁界中の抵抗率測定から評価した上部臨界磁界 B_{c2} の温度依存性から、わずかであるが温度の低下と共 に上部臨界磁界 B_{c2} の上昇が測定され、温度低下に伴 う主要なピンの変化と上部臨界磁界 B_{c2} の変化によって ピン力密度のスケール則が 20 K 近傍からずれると考え られる。尚、マルチギャップとの関係を調べるためには 更なる低温度高磁界の測定が必要である。

参考文献

- K. Tanaka, et al., Advances in Cryogenic engineering, 52B (2006) 662.
- [2] M. Takahashi, et al., Supercond. Sci. Technol., 18 (2005) 373.
- [3] T. Matsushita, et al., Physica C, 468 (2008) 1833
- [4] T. Matsushita, et al., Supercond. Sci. Technol., 21 (2008) 015008 (7pp)
- [5] A. Gurevich, *et al.*, *Supercond*, *Sci*, *Technol*. **17** (2004) 278.
- [6] A. Yamamoto, et al., *Supercond. Sci. Technol.*, **17** (2004) 921.

[7] M. Kiuchi, et al., Physica C,445-448 (2006) 474-477.