セルフジョイントシステムを導入した BSCCO2223 積層ケーブル Butt Joint の基礎研究

Fundamental Study on Butt Joint of Laminated BSCCO 2223 Cable with Self-joint System

東北大・工 伊藤 悟, 坂下 武志, 茂庭 圭介, 内田 美子, 橋爪 秀利 東北大・金研 西島 元 S. Ito¹, T. Sakashita¹, K. Moniwa¹, Y. Uchida¹, H. Hashizume¹, G. Nishijima²

¹ Faculty of Engineering, Tohoku University ² Institute for Materials Research, Tohoku University

1. はじめに

核融合炉の製造コスト、メンテナンスコストの削減の ためにマグネットを分割し着脱可能とする分割型高温超 伝導マグネットが提案されている。Fig.1 に分割型高温 超伝導マグネットの概念図を示す。マグネット材料として は、比較的高温で使用でき、材料の比熱を大きくするこ とができる高温超伝導体を採用している。これまで、分 割型高温超伝導マグネットの基礎研究として、10 枚積 層 BSCCO2223 ケーブルによる機械的バットジョイントの 研究が進められてきた[1]。

現在、分割型超伝導マグネットの接合法として Fig.2 に示すようなセルフジョイントシステムを提案している。 接合力としては負熱膨張特性を有する DFRP による接 合部への圧縮力、および自己磁場によって発生する電 磁力を利用する。セルフジョイントシステムの検証のた めには、DFRP を組み込んだ接合試験装置において、 温度変化、磁場変化にともなう接合性能の変化を評価 する必要がある。

一昨年度の共同利用研究においては、DFRP を組み 込んだ接合試験装置を用いて、伝導冷却体系におい てBSCCO 2223 ケーブルの接合試験を行い、温度-接 合抵抗特性を評価した[2]。その結果、温度の低下にと もなう接合抵抗の低下が観察された。この要因としては 温度低下にともなう BSCCO 2223 ケーブルの臨界電流

Fig.1 Schematic View of Remountable HTS Magnet

Fig.2 Self-Jointing System

の向上とDFRP の負熱膨張による接合応力の向上が考 えられる。昨年度は、温度と接合抵抗の関係を定量的 に考察するために、DFRP を取り外した実験装置を用い て、同様の接合試験を行ったが、試験用ケーブルおよ び装置の製作精度の問題で、信頼に足るデータを取得 できなかった[3]。

本年度は、試験用ケーブルを銅ジャケット付のものに 変更し、試験用ケーブルの製作精度、および試験用 ケーブルを装置に設置する際の精度向上を図った。ま た、製作した試験用ケーブルを用いて、機械的バット ジョイント試験を液体窒素浸漬冷却体系で行ったので、 その結果について報告する。なお、本年度の実施内容 は予備試験的なものであり、強磁場超伝導材料研究セ ンターの施設は利用していないが、本年度の成果をもと に次年度以降、利用する予定である。

2. 実験方法

2-1. 試験用ケーブル

Fig. 3に用いた試験用ケーブルを示す。Fig. 3 (a)に 示した従来のBSCCO 2223積層ケーブルをTest Cable A、Fig. 3 (b)に示した銅ジャケット付BSCCO 2223積層 ケーブルをTest Cable Bとする。Test Cable AはBSCCO 2223テープを10枚重ねて、低温はんだで束ねたもので ある。またTest Cable Bは、コの字型の銅ジャケットに BSCCO 2223テープを10枚積層し、Ag-Snはんだで含 浸して、銅板でふたをして製作したものである。

(a) Conventional stacked BSCCO 2223 cable (Test Cable A)

(b) Stacked BSCCO 2223 Cable with Copper Jacket (Test Cable B)

Fig. 3. Test Cables

Test Cable AおよびTest Cable Bの臨界電流は液体窒 素温度、自己磁場条件で、それぞれ約470 A、740 Aで ある。どちらの試験用ケーブルもケーブルの長手方向 に対して45度の角度で切断されており、その切断面が 実際の接合試験での接合面になっている。試験用ケー ブルの接合面は全て直径3 µmのアルミナ粒子で研磨 処理がされている。

機械的バットジョイントにおいて、接合抵抗は接合部 における接触点の数に強く依存するため、Test Cable B にはいくつかの接合面処理(電解めっき法による銀めっ き、銀箔の挿入、インジウム箔の挿入)を行った。これら の接合面処理は、BSCCO 2223 テープの領域のみに適 用し、銅ジャケットの領域には適用していない。これは、 超伝導テープ材とジャケット材の熱膨張率の違いにより、 接合試験の際に BSCCO 2223 テープの領域にわずか にすき間が生じるためである。Table 1 に実験で用いた 試験用ケーブルおよび接合面処理法をまとめる。結果 と考察の節では Table 1 に示した Sample Nameを用いる こととする。

2-2. 実験体系

Fig. 4 に接合試験の試験部を示す。試験用ケーブル は、接合面を接触させた状態で試験部に固定する。接 合力はケーブルの長手方向に対して垂直上方に配置 されている SUS 304 製のロッドによって接合部に負荷す る。接合力負荷用のロッドとしては、ケーブルに触れる 面が 4.5 mm × 4.5 mm のものを Test Cable A 用に、6 mm × 4.5 mm のものを Test Cable B 用に用いる。この ロッドの位置は装置に取り付けられているハンドルに よって制御することができ、接合部に負荷された圧縮応 力はロードセルによって計測することができる。また、接 合部を挟んで設置されている電圧端子間(60mm)の電 圧降下を測定し、印加電流で割ることで接合抵抗を算 出することができる。接合試験の際には、この試験部は 液体窒素に浸漬して 77K に冷却された状態にする。

Samp	le Name	Test Cable	Joint Surface Condition	Thickness of Metal Layer
A(Dry)		А	Only polished	
B(AgP)	B(AgP-5)	В	Electro-Plated with a Silver Layer	5 µm
	B(AgP-15)			15 μm
	B(AgP-25)			25 μm
B(AgF)	B(AgF-10)	В	Inserting a Silver-Film	10 µm
	B (AgF-30)			30 µm
	B (AgF-50)			50 µm
B(InF)	B(InF-50)	В	Inserting an Indium-Film	50 µm

Table 1 Test Samples

Fig. 4. Experimental Set-up

3. 結果と考察

3-1. 応力-臨界電流特性

接合試験を行う前に、ロッドによる圧縮応力と試験用 ケーブルの臨界電流の関係を評価した。この際に用い た試験用ケーブルは切断していないもの、すなわち接 合面がないものである。Fig. 5 に得られた結果を示す。 Fig. 5 の縦軸は臨界電流比(ゼロ応力時の臨界電流と 各応力時の臨界電流の比)を示している。Fig. 5 より、 Test Cable B は Test Cable A に比べて、高い応力時でも 臨界電流を保持できることがわかる。これは、ロッド端で の応力集中が Test Cable A では、BSCCO 2223 テープ に直接発生してしまうのに対し、Test Cable B では銅 ジャケット部に発生するため、せん断ひずみによる臨界 電流の低下の度合いを抑えることができるためであると 考えられる。したがって、銅ジャケット付のケーブルにす ることによって、より高い接合応力での機械的バットジョ イントが可能となり、接合抵抗をより下げられる可能性が ある。

Fig. 5. Compressive Stress Dependence of Critical Current

3-2. 接合試験

Table 1 に示されている全ての試験サンプルに対して、 接合抵抗を評価した。本小節では、まず、Test cable B での結果について考察する。Fig. 5 に B(AgP)の場合 (銀めっきを接合面の施した場合)、かつ印加電流 300A の場合の接合応力と接合抵抗の関係を示す。ど のめっき厚さの場合でも、接合抵抗は接合応力の増加 にともない減少している。B(Ag-5)と B(Ag-15)の場合の 接合抵抗はほぼ同じだが、B(Ag-25)の場合の接合抵抗 は、他の2つの場合に比べると大きな値となっている。 B(Ag-25)の場合の接合抵抗と B(Ag-15)、B(Ag-5)の場 合の接合抵抗の差はおよそ 0.5 μΩから 10 μΩであるが、 銀めっき層の抵抗はおよそ 5 nΩから 10 nΩ程度である ため、接合抵抗の差は銀めっき層の厚さの違いによるも のではないと考えられる。 Fig. 7 に電流と接合応力 400MPa のときの接合抵抗の上昇度の関係を示す。ここ で接合抵抗の上昇度とは、50A のときの接合抵抗から の抵抗の上昇値のことである。Fig. 7 より、電流が増加 すると接合抵抗が増加することがわかる。電流の増加に ともなう接合抵抗の増加は、接合面付近の超伝導材料 の臨界電流が低下し、電流が安定化材である銀へ流れ るためであると過去の研究で考察されている[5]。本研 究では銀めっき処理を電解めっき法で行っているため、

Fig. 6. Relationship between joint stress and joint resistance in the case of B(AgP)

Fig. 7. Relationship between applied current and increase in joint resistance starting from the resistance at 50 A in the case of B(AgP)

電解めっきの処理時間が長い B(AgP-25)では、他の 2 つの場合に比べて、接合面付近の超伝導体の結晶構 造が化学反応の影響を受け、臨界電流が低下してし まった可能性がある。

次に、接合部に銀箔を挿入したB(AgF)での結果に ついて考察する。Fig. 8にB(AgF)の場合、かつ印加電 流300Aの場合の接合応力と接合抵抗の関係を示す。 Fig. 8より、銀箔が薄いほど、接合抵抗が小さくなること がわかる。銀箔自体の抵抗はサンプル間の接合抵抗の 差に比べるとはるかに小さいので、これは、銀箔の軟ら かさに起因した結果であると考えられる。Fig. 6とFig. 8を 比べると、B(AgF)の場合のほうが、B(AgP)の場合より接 合抵抗が高い。これは、機械的接合の界面の数の違い に起因するものであると考えられる、すなわちB(AgP)の 場合には機械的接合の界面が1つであるのに対し、 B(AgF)では機械的接合の界面が2つであることが接合 試験の結果に現われたと考えられる。

続いて、接合部にインジウム箔を挿入したB(InF)での 結果について考察する。Fig. 9にB(InF-50)の場合、か つ印加電流300Aの場合の接合応力と接合抵抗の関係 を示す。Fig. 9にはB(AgP-15)の場合の接合抵抗もあわ せて示している。Fig. 9より、B(InF-50)の場合の接合抵

Fig. 8. Relationship between joint stress and joint resistance in the case of B(AgF)

Fig. 9. Relationship between joint stress and joint resistance in the cases of B(AgP-15) and B(InF-50)

抗は接合応力が低い場合でも十分に低いことが確認で きる。これは、インジウム箔が軟らかいために、容易に接 合部における接触点を増やすことができたためであると 考えられる。したがって、インジウム箔を用いることで、 接合部のひずみが小さい状態での再着脱が可能であ るといえる。また、より高い接合力を加えた場合には、銀 の抵抗のほうがインジウムの抵抗よりも小さいため、銀 めっきを接合面に施した場合のほうが、接合抵抗を下 げられる結果になっている。

最後に、Test Cable AとTest Cable Bでの接合試験の 結果を比較して、考察を加える。Fig. 10 にA(Dry)と B(AgP-15)の場合の接合応力と接合抵抗の関係を示す。 このときの印加電流はともに300Aである。Fig. 10より、 A(Dry)の場合の接合抵抗は、接合応力が約250MPaに なったあたりから上昇し始めているのに対し、B(AgP-15) の場合の接合抵抗は 接合応力が400 MPa程度になっ ても下降傾向にあることがわかる。この結果はFig.5に示 した応力と臨界電流の関係により説明がつく。一方、接 合応力が低いときの接合抵抗はA(Dry)の場合のほうが、 B(AgP-15)の場合よりも小さい。このことから、接合面を ケーブル長手方向に対して45度とし、ケーブル長手方 向に対して垂直上方から接合力を与える本接合法では、 ケーブルの接合面付近がひずむことによって、接合部 での接触点の数が増加している可能性が高いといえる。 垂直方向からではなく、ケーブルの長手方向に平行な 方向の接合力を与えることができれば、ケーブルに過 剰なひずみを与えずに、かつ接合部の金属コーティン グ層のみを変形させた状態で、機械的バットジョイントを 実現することが可能であると考えられる。

本年度の実験で主に用いてきた試験用ケーブルは Fig.3(b)に示した Test Cable B であるが、このケーブルの 断面は長方形断面ではないため、試験装置へ設置す る際、また接合力を負荷する際に、接合面がずれると いった問題がある。現在、一部、試験的に Fig. 11 に示 すような長方形断面の銅ジャケット付 BSCCO 2223

Fig. 10. Relationship between joint stress and joint resistance in the cases of A(Dry) and B(AgP-15).

Fig. 11. Revised Test Cable

ケーブルを製作し、接合試験を行っている。来年度以降は、Fig. 11 に示すケーブルを用いて、接合試験体系を改善し、伝導冷却体系で、磁場を印加した状態での接合試験を行うことを予定している。

4. まとめ

本年度は、銅ジャケット付 BSCCO 2223 ケーブルを試 作し、そのケーブルを用いて機械的バットジョイントの接 合試験を行った。試験の結果、銅ジャケット付 BSCCO 2223 ケーブルを用いることで、接合時のケーブルのひ ずみを抑えることができること、銀めっきやインジウム箔 を接合面に適用することで、接合抵抗を低減できること が確認できた。今後は試験用ケーブルをさらに改良す るとともに接合試験体系を改善し、伝導冷却体系で、磁 場を印加した状態での接合試験を行うことで、提案して いる分割型高温超伝導マグネットの設計に対して必要 なデータを取得していく予定である。

参考文献

- S.Ito, H.Hashizume "Overview of fundamental study on remountable HTS magnet", Fusion Engineering and Design, 81 (2006) pp. 2527-2533.
- [2] S. Ito, H. Hashizume, "Mechanical Butt Joint of HTS Cable with DFRP for Remountable HTS Magnet", Proc. 16th PBNC, Aomori, JAPAN, Oct. 13-18, 2008 (CD-ROM)
- [3] 東北大学金属材料研究所強磁場超伝導材料研究 センター平成 19 年度年次報告
- [4] H. Hashizume, S. Ito, S. Takami, A. Sagara, "Joint performance of HTc superconductor for remountable magnet system", *Fusion Science and Technology*, 47, (2005) pp. 901–905.