
Development of High-Field Scanning Tunneling Microscope and Application to Superconducting Materials

強磁場走査トンネル顕微鏡の開発と超伝導体への適用

We have developed a high-field scanning tunneling microscope (HF-STM) and applied HF-STM to superconducting materials in order to observe electronic properties at the atomic scale under high magnetic fields. Since the 18T superconducting magnet (18T-SM) at HFLSM used in this study does not have a vibration isolation table (VIT), a small STM head with high resonant frequency (\sim 9.3kHz) has been used for STM measurements. Without using VIT, we have succeeded in STM and scanning tunneling spectroscopy (STS) measurements on ErBa₂Cu₃O_y thin films at T=7.8 K and H=18 T. The STM image shows screw dislocations with a step height of \sim 1.2 nm (i.e., the c-axis lattice constant). The spatial variation of the tunneling spectra including a typical superconducting spectrum is observed.

IMR, Tohoku University: T. Nishizaki, S. Awaji, N. Kobayashi Reference: T. Nishizaki and N. Kobayashi, "Development of High-Field STM for 18 T Cryocooled Superconducting Magnet", J. Phys: Conference Series, 150 (2009) 012031.

強磁場中における超伝導体の電子状態を原子スケールで観測するために、強磁場走査トンネル顕微鏡(HF-STM)の開発を行い超伝導体の STM 測定へ適用した. 本研究で使用した 18T 超伝導マグネット(18T-SM)には除振台(VIT)が設置されていないため、共振周波数が非常に高い(~9.3 kHz)小型の STM ヘッドを用いて測定した. その結果, T=7.8 K, H=18 T において $ErBa_2Cu_3O_y$ 薄膜の STM と走査トンネル分光(STS)測定に成功した. STM 像からは~1.2 nm の高さ(c 軸格子定数に相当)のステップを持つ螺旋転位を観測し、STS 測定からは典型的な超伝導スペクトルとその空間変化を観測した.

東北大学金属材料研究所:西嵜照和,淡路 智,小林典男