人工ピンを導入した PLD-Gd123 コート線材における低温 J_c 特性 J_c property of PLD-Gd123 coated conductors with APC at low temperature

東北大学·金研 鈴木 匠¹, 淡路 智¹, 渡辺 和雄¹, ISTEC-SRL 吉積 正晃², 衣斐 顕², 和泉 輝郎², 塩原 融² T. Suzuki¹, S. Awaji¹, K. Watanabe¹, M. Yoshizumi², A. Ibi², T. Izumi², Y. Shiohara² ¹Institute for Materials Research, Tohoku University ²Superconductivity Research Laboratory, International Superconductivity Technology Center

1. はじめに

希土類高温酸化物超伝導体(REBa₂Cu₃O_v (RE123, RE は Y を含む希土類元素))のテープ線材は強磁場 中で高い臨界電流密度特性J。を示すことや、機械特性 に優れた基板を用いていることなどから、低温強磁場応 用への適用も期待されている。しかし、一方で依然大き な異方性の克服が重要な問題の一つとして認識され、 磁場を c 軸方向に印加した時の低い磁場中 J。を向上さ せる c 軸相関ピンとしての人工ピンの導入などがなされ 一定の成功を収めている。c 軸相関ピンとは、RE123 の c軸と平行方向に揃った柱状の磁束ピンニングセンター のことであり、ランダムに分散する欠陥や析出物をラン ダムピンと呼び区別される。特に磁束線と c 軸相関ピン の方向が揃った場合には、非常に強く働くことから、高 い」な得られる。しかし、マグネット応用に利用される低 温での c 軸相関ピンのデータは、高い J. のため測定が 非常に難しいことからほとんどなく、低温強磁場の人工 ピンを導入した試料の J。特性は、その応用が期待され ながらほとんど理解されていない。また、人工ピンのサイ ズが 10nm 程度に対し、低温では面内方向で数 nm、面 直方向で 1nm 以下のコヒーレンス長により高温とは異な るピンニング状態が現れると予想できる。

本研究では、*c*軸相関ピンとして働く人工ピンの BaZrO₃(BZO) ナノロッドを導入した長尺 Gd123 テープ 線材における低温でのピンニング機構を解明することを 目的として、臨界電流密度の低温・強磁場特性の評価 を行った。

2. 試料緒元および実験方法

試料線材の緒元をTable 1 に示す。PLD(Pulse Laser Deposition)法によって作製したGd123 テープ線材であ り、基板はIBAD(Ion-Beam Assisted Deposition)法によ り作製されたMgO バッファ層を持つHastelloy基板であ る。また、最表面には保護層として10 μmのAgを用いた。 この試料に対して、フォトリングラフィー及びウェットエッ チング技術を用いて、幅約100 μm、長さ約1 mmのブ リッジ形状に加工した。

測定は四端子法を用いて臨界電流密度を通電法に て測定した。試料温度は、ヘリウムガスフローと試料ホ ルダー上のヒーターにより、精密にコントロールし、臨界 電流決定の電界基準は1 µV/cm とした。

3. 実験結果と考察

3-1 臨界電流密度の磁場印加角度依存性

Fig.1 に人工ピンとして BaZrO₃(BZO)を 5% 添加した PLD-Gd123 コート線材の 40 K における臨界電流密度 J_c の磁場印加角度依存性を示す。 J_c は 0、90°方向に ピークを持つ。90°($B \perp c$)方向のピークは超伝導体が本 質的に持つ層状構造によるイントリンジックピンの ab 面 相関ピンによるピークである。低磁場では $\theta = 0^\circ$ (B//c) で c 軸相関ピンに起因したピークが存在するが、高磁場 ではピークが確認できなかった。この振る舞いは液体窒 素温度等の高温での振る舞いと定性的に一致してい る。

Table 1 Specification of Gd123 coated conductor with APC

	Material	Thickness
Stabilizer	Ag	10 µm
Superconducting layer	PLD-Gd123	1.2 μm
Buffer	CeO ₂	0.5 μm
	LaMnO ₃	19 nm
	IBAD-MgO	4.0 nm
	Gd-Zr-O	110 nm
Substrate	Hastelloy	100 µm

Fig.1 Magnetic field angle dependence of J_c in a PLD-Gd123 coated conductors with APC at 40.0 K.

Fig.2 Magnetic field angle dependence of J_c in a PLD-Gd123 coated conductors with APC at 4.2-77.3 K. (a) B = 1 T (b) B = 3 T

Fig.3 Normarized magnetic field angle dependence of J_c in a PLD-Gd123 coated conductors with APC at 4.2-77.3 K. (a) B = 1 T (b) B = 3 T

Fig.2 に 4.2-77.3 K における 1 T と 3 T の J_c の磁場印 加角度依存性を示す。温度の低下に伴って J_c はすべ ての角度で向上するが 0°方向のピークは低温になるに つれて徐々に小さくなっている。詳細に比較するために 90°の J_c の値で規格化した J_c の角度依存性を Fig.3 に 示す。高温領域では、人工ピンに起因した大きなピーク が 0°方向に現れているが、60 K 以下で減少をはじめ、 20 K 以下では消失している。 $T_c = 90$ K の場合面内方向 の磁束ピンニングに寄与するコヒーレンス長 2 くは 60 K 程度で 7 nm となり、BZO の直径 7nm[1]とほぼ一致する。 したがって、コヒーレンス長とピンニングセンターのサイ ズが強く関係しており、コヒーレンス長が短くなる低温で は高温とは大きく異なることが示唆された。

3-2 臨界電流密度の磁場依存性

Fig.4 に 20,40 K における J_c の磁場依存性を示す。B $\perp c$ 軸方向の J_c は、人工ピンの有無にかかわらず、ほと んど磁場に依存しない。しかし、B// c 軸方向の J_c は人 工ピンを導入することによりその磁場依存性が大きく なっている。次にこの変化率を議論するために、近年ナ ノロッド導入薄膜においてしばしば議論される α 値につ いて考える。 α 値とは低磁場領域の J_c の磁場依存性を あらわす指数パラメータであり、 $J_c(B) \propto B^{\alpha}$ で与えられる。 α 値を決定するために Fig.5 に両対数グラフプロットした にした J_c の磁場依存性を示す。

人工ピンなし試料の場合は10 T 近傍以下の広い範囲 でほぼ直線となっており、その傾きから α = -0.56 の値が 得られる。一方で、人工ピン入り試料では直線部分が少 ないが、数 T 以下の低磁場で α を決めると約-0.47 とな る。 α 値が小さいので磁場依存性が小さいということにな り、低磁場では人工ピン入りの試料の方が磁場依存性 が小さくなる。しかし、この直線からずれる磁場が人工ピ ンの有無で大きく変化しており、人工ピン入りの試料の マッチング磁場 B =3-5 T 程度の磁場で直線からずれる のに対し人工ピンなしの試料では 10 T 程度まで直線に フィッティングできている。この結果は人工ピン入りの試 料ではマッチング磁場以上で急激にピン力が減少する ことを示唆している。

Fig.4 Magnetic field dependence of J_c at 40 K and 20 K for B//c and $B \perp c$.

3-3 臨界電流密度の異方性

Fig.6に、J_cの異方性J_c^{ab}/J_c^cの温度依存性を示す。 J_c^{ab}/J_c^c は温度の減少と共に一旦急激に減少し最小と なった後、さらに低温では増加する。この振る舞いは低 温でイントリンジックピンによるピン力がが急速に増大す るためと理解されている。人工ピンの有無で比較すると、 ナノロッドの導入により、J_cの異方性が低温でも減少し ていることが分かる。これらの結果から、低温ではナノ ロッドによりピン力が角度依存性には現れないものの、 J_cにはわずかに効いていると考えられる。すなわち、ナ ノロッドがブロードに効いていると考える。

4. まとめ

PLD 法によって作製した BZO のナノロッドを導入した Gd123コート線材に対し、臨界電流密度特性を4.2 Kの 低温まで測定した。その結果、B//c 軸方向のナノロッド に起因したピークは 60 K で最大となり、20 K 以下で消 失した。また、低温では人工ピン入りの試料は人工ピン なしの試料に比べて磁場依存性が大きくなった。しかし、 J_cの異方性は低温でも減少していることから、ナノロッド が低温でも臨界電流密度特性に影響を与えると共にコ ヒーレンス長が短くなる低温では高温とは大きく異なる 磁束ピンニング状態になることが示唆された。

5. 謝辞

本研究は、超電導応用基盤技術研究開発業務の一環 として、新エネルギー・産業技術総合開発機構 (NEDO)の委託により実施したものである。

参考文献

[1] M. Namba, S. Awaji, K. Watanabe, S. Ito, E. Aoyagi, H. Kai, M. Mukaida, R. Kita: Applied Physics Express 2 (2009) 073001

Fig.5 Double logarithmic plot of magnetic field dependence of J_c at 20 K for B//c

Fig.6 Temperature dependence of the J_c anisotropy, J_c^{ab}/J_c^{c} , at 3 T, 9 T and 17 T.