溶液法による YBCO 膜へのナノ粒子ピンの導入 Addition of pinning centers for YBCO films grown by metal organic deposition

九州大·工 寺西 亮, 梅野 慧, 木須隆暢 東北大·金研 淡路 智, 渡辺 和雄 ISTEC·超伝導工研 吉積正晃, 和泉輝郎 R. Teranishi¹, A. Umeno¹, T. Kiss¹, S. Awaji², K. Watanabe², M. Yoshizumi³, T. Izumi³, ¹Faculty of Engineering, Kyushu University ²Institute for Materials Research, Tohoku University

³Superconductivity Research Laboratory, ISTEC

1. はじめに

イットリウム系酸化物超伝導体(REBa₂Cu₃O_v, RE:Y や希土類元素)を用いた薄膜テープ線材の長尺 化技術開発における近年の進展はめざましく、同線 材の電力機器への実用化の期待が大きい[1-3]。テー プ線材の超伝導層の作製方法としては、簡便性やコ ストの観点から溶液法が注目されており、原料に三 フッ化酢酸塩等を用いた塗布熱分解法により高い臨 界電流密度(Jc)を有する薄膜線材が得られている [1,4]。しかしながら、磁場環境下での線材応用を考 慮すると、磁場中における Jc 特性の改善が依然とし て開発課題の一つとなっており、超伝導膜中への結 晶欠陥や析出物など磁束ピン止め点の人工導入によ る特性改善の研究が盛んに行なわれている。これま で、柱状あるいは粒状の Ba 複合酸化物からなる第 二相析出物を膜中にナノレベルで導入することによ り、磁場中 Jc 特性が向上することが多数報告されて いる[5-7]。

磁束のピン止め点と考えられているこれら析出物 の形状は、成膜方法や結晶化条件などに依存性を示 す。レーザー蒸着法を用いて ErBa₂Cu₃O_v 膜中に Ba₂ErNbO₆を導入すると、これら第二相は成膜プロ セスに起因して柱状で膜中に析出することが報告さ れており、直径 10nm 程度の Ba₂ErNbO₆の導入によ り磁場中でのJc低下が改善されている [8,9]。また、 ピン止め点の原料を含んだ溶液の塗布膜を結晶化さ せる溶液法による成膜では、膜中に粒状のピン止め 点が析出する。これまで、直径 20-30nm 程度の BaZrO₃や BaSnO₃粒子を同法により膜中に分散させ ることによる Jc 特性の改善が報告されている [7,10,11]。しかし、溶液法により作製した膜の磁場 中 Jc はレーザー法による膜のそれよりも一般的に 低く、溶液法による超伝導膜の Jc 特性向上には、粒 状ピン止め点の数密度の高度化や微細化などが求め られている。

そこで、本研究では溶液法を用いて YBa₂Cu₃O_y (YBCO) 膜中に粒状の Ba₂YNbO₆ (BYNO) を導入し、 薄膜組織への影響や磁束ピン止め点としての効果を 考察する。

2. 実験方法

Y 及び Ba のトリフルオロ酢酸塩と Cu のナフテン

酸塩をY:Ba:Cuのモル比が1:2:3となるよう混合した 溶液に、これら金属イオンに対して Nb が 2-10mol% となるように塩化ニオブのエタノール溶液を混合し た。これらの出発溶液を LaAIO₃単結晶基板にスピン コートし、水蒸気を導入しながら酸素雰囲気中にて 430 まで昇温し仮焼した。その後、水蒸気を含んだ 低酸素雰囲気中にて 760 で結晶化した。また、結 晶化熱処理中に急冷試料を作製し、Nb 塩添加膜の成 長過程を調査した。

得られた試料は、X 線回折法により結晶配向性を 評価し、透過電子顕微鏡(TEM)により組織観察を行 なった。また、磁場中での Jc 特性は、4 端子法によ り評価した。

3. 実験結果と考察

Nb 塩を 2mol%添加した YBCO 膜の XRD 0-20 測 定の結果を Fig.1 に示す。Fig.1 より、YBCO の 00/ 面反射に起因する鋭いピークが観察されたことから、 Nb 塩添加 YBCO 膜の c-軸配向性が認められた。ま た、43°付近に YBCO や基板に起因しないピークが 観察された。これは Nb 塩を添加していない YBCO 膜では観察されないことから、Nb 化合物が YBCO 膜中に析出していることが示唆される。

Fig. 1 XRD θ -2 θ scan of YBa₂Cu₃O_y film by starting solution with Nb-salt.

そこで、TEM により膜の微細組織を観察した。 Fig.2 にNb塩を 2mol%添加した YBCO 膜断面の組織 観察結果を示す。YBCO 膜が LaAlO₃ 基板上に膜厚 約 120nm で堆積している様子が観察され、また直径 約 20nm の第二相粒子が膜中に析出していることが 認められた。この析出粒子について回折像から格子 定数を算出した結果、析出粒子は Ba₂YNbO₆(BYNO) であると同定され、これは Fig.1 の XRD において 43° 付近に現れたピークを、Bragg の式を用いて同定し た結果と一致した。以上の結果から、Nb塩を添加し た出発溶液による YBCO 成膜により、膜中に BYNO が生成することが明らかとなった。

Fig. 2 TEM image of YBa₂Cu₃O_y film by starting solution with Nb-salt.

次に、Nb 塩を添加していない YBCO 膜、Nb 塩を 2、5 及び 10mol%添加した溶液により結晶化した YBCO 膜について、XRD 0-20 スキャンから得られた YBCO 005 ピーク強度と Nb 塩添加濃度との関係を

Fig. 3 Dependences of YBCO 005 peak intensity ratio on concentration of Nb-salt addition in starting solution.

調べた。Fig.3 に示した測定結果では、YBCO の 005 ピーク強度を LaAlO₃ 基板の 200 ピーク強度で規格 化した値を縦軸として評価したところ、Nb 塩を添加 していない膜及び 2mol%添加した YBCO 膜におい ては高いピーク強度が得られた。一方、2mol%より 高濃度で Nb 塩を添加した膜では、添加濃度の増加 に伴い YBCO のピーク強度の低下が見られた。Nb 添加濃度の増大に伴なうピーク強度低下は、BYNO 析出量増加による YBCO 層の生成量減少や、出発溶 液の濃度及び粘性低下による塗布膜厚の低下などが、 その原因として考えられる。

Fig.3 において高い YBCO ピーク強度が得られた Nb 塩 2mol%添加 YBCO 膜の Tc を測定した結果、約 89.5K であり、Nb 塩を添加していない膜とほぼ同等 であった。そこで、同膜の磁場中での Jc 特性を評価 した。Fig.4 に、YBCO 膜及び Nb 塩を 2mol%添加し た YBCO 膜の 77.3K における磁場中での Jc 測定結 果を示す。測定時の磁場印加方向は、YBCO 結晶の c 軸方向に平行とした。Fig.4 の結果より、いずれの 膜においても Jc は磁場強度の増大にともなって低

Figure 4 Critical current density properties of YBCO films in magnetic fields.

下したが、BYNOを膜中に含む YBCO 膜の Jc はいずれの磁場強度においても Nb 塩を添加していない膜のそれらよりも高く、また、磁場強度依存性も低減していることが示された。XRD 及び TEM 観察結果を考慮すると、YBCO 膜中に生成した BYNO が磁束のピン止め点として機能していると考えられる。

しかしながら、BZO ナノ粒子を磁束ピン止め点と して膜中に導入している報告よりも特性が低く[10]、 更なる高特性化には有効なピン止め点の数密度の高 度化が重要であり、BYNO 導入時の YBCO 膜の生成 機構の調査とその知見による組織制御などが今後の 課題である。

4. まとめ

Nb 塩を含んだ出発溶液を用いて YBCO 膜を結晶

化し、薄膜組織や特性への影響を調査した。Nb 塩を 2mol%添加した溶液による YBCO 膜結晶化により、 膜中に粒径約 20nm の BYNO 微粒子が生成した。磁 場中での Jc 測定の結果、BYNO の磁束のピン止め点 としての効果が認められた。しかしながら、Jc 値は 既往の報告より低く、特性向上には、BYNO 導入時 のYBCO膜の生成機構の調査とその知見による組織 制御(析出粒子の粒径支配因子の考察)などが今後 の課題であることが示された。

【謝辞】

本研究は、イットリウム系超伝導電力機器技術開 発の一環として、(財)国際超伝導産業技術研究セ ンター(ISTEC)を通じて新エネルギー・産業技術総合 開発機構(NEDO)の委託により実施したものであ ります。また、電子顕微鏡による組織観察では九州 大学超高圧電子顕微鏡室及び同大学材料工学部門金 子賢治教授、山田和広技術専門職員のご協力を賜り ました。

参考文献

- [1] T. Izumi, Y. Shiohara, PhysicaC 470 (2010) 967.
- [2] V. Selvamanickam, Y. Chen, X. Xiong, Y. Xie, X. Zhang, A. Rar, M. Martchevskii, R. Schmidt, K. Lenseth, J. Herrin, *PhysicaC* 468 (2008) 1504.
- [3] M. Igarashi, K. Kakimoto, S. Hanyu, C. Tashita, T. Hayashida, Y. Hanada, S. Fujita, K. Morita, N. Nakamura, Y. Sutoh, H, Kutami, Y. Iijima, T. Saitoh, *J. Phys. : Conf. Ser.* 234, 2 (2010) 22016.

- [4] M. Parans Paranthaman, S. Sathyamurthy, Xiaoping Li, E.D. Specht, S.H. Wee, C. Cantoni, A. Goyal, M.W. Rupich, *PhysicaC* 470 (2010) 352.
- [5] P. Mele, K. Matsumoto, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, R. Kita, *PhysicaC* 469 (2009) 1380.
- [6] J. L. MacManus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. P. Maley, D. E. Peterson, *Nature Mater*. 3 (2004) 439.
- [7] J. Gutierrez, A. Llordes, J. Gazquez, M. Gibert, N. Roma, S. Ricart, A. Pomar, F. Sandiumenge, N. Mestres, T. Puig, X. Obradors, *Nature Materials* 6 (2007)367.
- [8] H. Kai, S. Horii, A. Ichinose, R. Kita, K. Matsumoto, Y. Yoshida, T. Fujiyoshi, R. Teranishi, N. Mori, M. Mukaida, *Supercond. Sci. Technol.* 23, 2 (2010) 25017.
- [9] K. Yamada, M. Mukaida, H. Kai, R. Teranishi, A. Ichinose, R. Kita, S. Kato, S. Horii, Y. Yoshida, K. Matsumoto, S. Toh, *Appl. Phys. Lett.* 92, 11 (2008) 112503.
- [10] M. Miura, M. Yoshizumi, T. Izumi, Y. Shiohara, Supercond. Sci. Technol. 23, 1 (2010) 14013.
- [11] R. Teranishi, Y. Miyanaga, K. Yamada, N. Mori, M. Mukaida, M. Miura, M. Yoshizumi, T. Izumi, M. Namba, S. Awaji, K. Watanabe, *PhysicaC* 470 (2010) 1246.