
Improvement of a 360 mm bore Cryocooled Superconducting Magnet 360mm ボア冷凍機冷却超伝導マグネットの改良

A 360 mm bore cryocooled superconducting magnet (CSM) for a cryogen-free hybrid magnet was improved to upgrade its magnetic field higher than ever. For the improvement of the CSM, Nb₃Sn superconducting coils were fabricated using high strengthen CuNbTi/Nb₃Sn wires with Ta barrier, and the thermal design was changed. The CSM was demonstrated that excitation currents were reached 228 A (Nb₃Sn) and 355 A (NbTi) within 1 hour, and the Nb₃Sn coil temperature was 4.4 K at 228 A. The magnetic field at the coil center of the CSM was measured 9.7 T when the excitation currents were 239 A (Nb₃Sn) and 355 A (NbTi).

T. Tsurudome¹, K. Watanabe², S. Awaji², H. Oguro², S. Hanai³

¹Sumitomo Heavy Industries, Ltd, ² IMR, Tohoku University, ³Toshiba Corp.

Reference: K. Watanabe, G. Nishijima, S. Awaji, K. Takahashi, K. Koyama, N. Kobayashi, M.Ishizuka, T. Itou, T. Tsurdome, and J. Sakuraba, "Performance of a Cryogen-Free 30 T-Class Hybrid Magnet", IEEE Trans. on Applied Supercond., Vol.16, No.2 (2006) p.934

無冷媒ハイブリッドマグネット用 360mm 室温ボア無冷媒超伝導マグネットについて、発生磁場を向上させる改善作業を実施した。性能改善のため、 Nb_3Sn コイルを Ta バリアの高強度 $CuNbTi/Nb_3Sn$ 線材で製作し、伝熱設計を変更した。その結果、1 時間以内で Nb_3Sn コイル 228A、NbTi コイル 355A に到達することを実証した。また、 Nb_3Sn コイルにおいて 228A 到達時の温度は 4.4K であった。超電導コイル中心磁場は Nb_3Sn コイル 239A、NbTi コイル 355A のとき、9.7T であることを確認した。

鶴留 武尚¹,渡辺 和雄²,淡路 智²,小黒 英俊²,花井 哲³
¹住友重機械工業株式会社,²東北大学金属材料研究所,³株式会社 東芝