REBCO エポキシ含浸コイルの電磁力試験

Hoop stress tests of epoxy-impregnated REBCO coils

淡路 智¹,小黒英俊¹,鈴木 匠¹,諏訪友音¹,渡辺和雄¹,西島 元²,

花井 哲³, 丸川宏太郎³, 大保雅載⁴, 齋藤 隆⁴, 坂本久樹⁵, 井上 至⁵,

Yasuyuki Miyoshi⁶, Xavier Chaud⁶, Francois Debray⁶

¹東北大・金研、²物材機構、³東芝、⁴フジクラ、⁵古河電工、⁶LNCMI

S. Awaji¹, H. Oguro¹, T. Suwa¹, T. Suzuki¹, K. Watanabe¹, G. Nishijima², S. Hanai³, K. Marukawa³, M.

Daibo⁴, T. Saito⁴, H. Sakamoto⁵, I. Inoue⁵, Y. Miyoshi⁶, X. Chaud⁶, F. Debray⁶

¹Institute for Materials Research, Tohoku University

²National Institute for Materials Science

³Toshiba Corporation

⁴Fujikura Ltd.

⁵Furukawa Electric Co., Ltd

⁶Laboratoire National des Champs Magnétiques Intenses

1. はじめに

REBa₂Cu₃O_y (RE123, REは希土類)高温超伝導線材の 開発が進み,最近では強磁場マグネット開発ための コイル化技術への展開が世界的に実施されている。 東北大金研強磁場センターでも,25T無冷媒超伝導 マグネットなどの強磁場超伝導マグネット開発のた め,RE123線材を用いたコイル化技術開発を進めて いる。特に,無冷媒超伝導マグネット開発のため, 伝導冷却に適した構造として,RE123含浸コイルが 重要となる。一方で,RE123テープは多層膜構造を 有することで,剥離力に弱く,エポキシ含浸した場 合の熱応力により剥離が発生し,コイルが劣化する ことが報告され,深刻な問題となっている。しかし 最近,コイル化技術の進歩によってコイル分割や接 着力の弱い含浸材を用いることで含浸コイルの作製 が可能となってきた[1]。今年度はエポキシ含浸した

	Coil A	Coil B
Wire		
Material	PLD-GdBCO	CVD-YGdBCO
Buffer	$CeO_2/IBAD$ - $Gd_2Zr_2O_7$	LaMnO ₃ /IBAD-MgO
Width	5 mm	4 mm
Stabilizer	Cu 100 μm	Cu 40 μm
Substrate	Hastelloy 100 µm	Hastelloy 50 µm
Thickness	$pprox 217 \ \mu m$	95 μm
Ic (77K, sf)	150 A	111 A
Coil		
Type	Single pancake	Double pancake
Inner dia.	89.8 mm	75 mm
Outer dia.	176 mm	86.7 mm
Height	5.5 mm	10 mm
Turn No.	147 turns	34 x 2 turns
Tape length	61.4 m	40 m
Impregnation	Epoxy resin	Epoxy resin
No. of sub-coils	16	3
Inductance	3.7 mH	620 µH
Coil $I_{\rm c}$ (77K)	71 A (0.1 µV/cm)	$50 \mathrm{A}$ (0.1 μ V/cm)
<i>n</i> -value (77K)	17-21	23

 $TABLE \ I \quad SPECIFICATION \ OF \ THE \ TEST \ COILS$

Fig. 1 Transport properties of the coil-A at 8 T(a, b) and 0 T(c).

コイルを数種類作製し、電磁力下の試験を行った。

2. 実験方法

実験に用いたテストコイルの諸元を Table 1 に示 す。今回は、2 種類の異なる RE123 線材を用いてコ イルを作製した。コイル A は、金研強磁場センター の大口径無冷媒超伝導マグネット(8T360-CSM)を使 用し、コイル B はグルノーブル強磁場施設 LNCMI にある内径 170mm の大口径 19T 水冷マグネットを 用いて試験を行った。両コイルともエポキシ含浸コ イルであり、液体ヘリウム中で実験を行った[2]。

実験結果と考察

3.1 A コイル

Fig.1 にバックアップ 8T および 0T 中における A コイルの通電特性を示す。電流掃引時には,コイル インダクタンスに起因した電圧が発生するが,11回 目の通電(Fig. 1(a))では,約 400A を越えた付近から さらに電圧が上昇をはじめ,450A 近傍で熱暴走を起 こした。12回目の通電では(Fig. 1(b)),11回目とほ ぼ同じ通電特性を示し,420A の安定通電を確認した。 これらの結果,0.1 μ V/cm で定義した本コイル *I*_cは 8T の磁場中で約 415A であった。一方,ゼロ磁場中 の *I*_cは 520A まで上昇した。大きな異方性を有する RE123 テープの場合,コイル *I*_cは大まかには発生磁 場の c 軸方向成分 (コイルに対する径方向成分) に よって決まる。磁場の径方向成分は,大口径の大型 マグネット中の扁平なコイル場合,ほとんどが自己 磁場の寄与となる。このため,コイル *I*_cはバックア

Fig. 2 Transport porperties of the coil-B at 13.5 T. (a), (b) and (c) are data of upper pancake, intermediate section and lower pancakes.

ップ磁場に大きく依存しないと考えられている。しかし今回,8T中と0T中で I_c の違いが見られた。この結果は, I_c の磁場印加角度依存性の違いに起因していると考えられ、コイル設計には線材 I_c の磁場、磁場印加角度などを考慮する必要性を示唆している。 一方で,8T中の $I_c \approx 415A$ 通電時のコイルに誘起された電磁力は、基板換算で約570 MPaとなり、RE123線材の高い機械特性を示唆している。

3.2 B コイル

Fig. 2 にコイル B に対するバックアップ磁場 13.5 T 中の通電特性を示す。図から分かるように、最大 460 A まで抵抗成分による電圧発生が見られていな い。次に、通電電流に対するコイル表面のひずみ状 態を Fig. 3 に示す。ひずみは、コイル内面、外面、 上部表面に取り付けたひずみゲージで測定した。測 定した多くのひずみは、Fig. 3 に示すように通電電 流に対してほぼ線形に増加し,可逆となった。また, 最大通電電流に対するひずみは, コイル内面で約 0.5%, 外面で約 0.3%, 上面で約 0.4%であった。こ れらの結果は、コイルが可逆に変形し、コイル内面 により大きな電磁力がかかっていることを示してい る。含浸コイルが一体となって変形する場合、コイ ル内部の応力分布は、Wilson による解析式が与えら れている[3]。これを用いてコイル内部の hoop 応力 と径方向応力を計算した結果を Fig. 4 に示す。比較 のため含浸なしの場合(BJR)も示した。図から分かる ように、コイル内部で応力が分布しており、hoop 応

Fig. 3 Hoop strains of the coil-B at 13.5 T as a function of the operation current. Strains were measured on (a) inner-, (b) top- and (c) outer-surfaces of the coil.

カはコイル内部の方が、外部よりも大きくなること が分かる。この計算結果は、測定されたひずみの結 果と定性的に良く一致している。また、線材の応力-ひずみ特性から見積もったコイル内面の応力は約 1330 MPa となり、Fig. 4 の結果と定量的にも良い一 致を示している。これらの結果は、Y123 コイルが高 い機械特性を有しているため、1000 MPa を越える高 い電磁力下で用いることが可能であることを示唆し ている。

4 まとめ

RE123 テープ線材を用いたエポキシ含浸コイルを 試作し,高磁場・高電磁力下における試験を行った。 その結果,1300 MPa 以上の高い電磁力下でも安定に 運転が可能であることが分かった。コイル臨界電流 は,線材の I_cの磁場角度依存性の影響を大きく受け, それによってコイル I_cが制限されることを実証した。 これらの結果を踏まえ,実際の 25T 無冷媒超伝導マ グネットなどの設計・開発を実施していく予定であ る。

Fig. 4 Calculated stress distribution in the coil-B at I_{op} = 460A and B = 13.5T. (a) Hoop stress and (b) Radial stress. The dotted lines correspond to the boundaries of the sections.

参考文献

[1] Y. Shiroyanagi, *et al.*, *IEEE Trans. Appl. Supercond.*, 21 (2008) 1649.

[2] S. Awaji, et al.: IEEE Trans. Appl. Supercond. 23 (2013) 4600305.

[3] M. N. Wilson, "Superconducting Magnets," Oxford Science Publications, Oxford, 1982, pp. 42-46.