Y 系コイルの電磁応力評価検証 Evaluation of Electromagnetic Stress in Y-system Coil

渡部 智則¹, 玉田 勉¹, 鹿島 直二¹, 平野 直樹¹, 長屋 重夫¹, 淡路 智², 小黒 英俊² ¹中部電力,²東北大·金研

T. Watanabe¹, T. Tamada¹, K. Kashima¹, N. Hirano¹, S. Nagaya¹, S. Awaji¹ and H. Oguro²

¹ Chubu Electric Power Co. Inc.

² Institute for Materials Research, Tohoku University

1. はじめに

電力系統制御用 2GJ 級 SMES[1],[2]の実現に向け, Y 系超電導線材を用いた伝導冷却型高磁場コンパクト コイルの技術開発を進めている。これまでのコイル化技 術を検討し,フープ応力基礎評価として液体へリウム冷 却の下,11T の外部磁場中で通電することで、多層巻 CVD-YBCO コイルが線材基板に対して最大 850 MPa 級のフープ応力に耐えることを実証するとともに、同等 の高いフープ応力耐性を有する線材補修技術を確立し たことを報告した[3],[4]。一方で,エポキシ含浸に起因 した,剥離の影響などの課題が明らかとなった。本年度 はこれらの結果を踏まえ,含浸方法を中心としたコイル 化技術の確立を目指し,Y 系線材に合った含浸・コイル 構造の検討をパンケーキコイルによって行い,電磁応 力試験にて評価・検証した。

2. Y系コイルのフープ応力試験評価

2-1. コイル製作

フープ応力試験用コイルに使用した線材は、 IBAD-CVD プロセスで作製した。幅 10 mm、厚さ 100 μm のハステロイ基板に IBAD 法による第1中間層、ス パッタによる第2中間層を形成した後、CVD法によるGd と Y の混晶の超電導層を成膜し、Ag スパッタ後、安定 化層として Cu メッキを線材全周囲に厚さ約 50 µm 施し た。Cu メッキ線材は、ポリアミド系の樹脂コーティングに よる絶縁を施してある。なお、絶縁被覆作業に関しては 予め,超電導線材のに被覆した際の通電特性の低下 の有無,コイル巻線による通電特性の低下の有無,さら に液体窒素と室温間での繰り返し冷却サイクルでの特 性低下の有無を試験し,いずれにおいても良好に超電 導特性が維持されていることを確認してから今回のコイ ル作製に適用した。最終的に得られた線材は絶縁体込 みで,厚さ約0.3mmである。Fig.1に使用した線材のL 分布を示す。続いて、この線材52mずつ2本に分割して 巻線し、パラフィン含浸してダブルパンケーキコイルを2 個作製した。この際,1個はハステロイ基板に対して超 電導層が径方向内側に、もう1個は逆に超電導層が外 側になるようにしてコイル巻線を行った。作製したダブル パンケーキコイル(以下、DPコイル)の諸元をTable1に, その外観写真を Fig. 2 に示す。コイルに発生する電圧 測定用の電圧タップは DP コイルの両端だけでなく、上 下コイルおよび上下コイルをつなぐ中間部の各箇所の 電圧をそれぞれ測定できるように設置した。

Fig. 1 I_c distribution of the wire used for the hoop stress test coil at 77 K.

Table 1 Specifications of the test coils	
Coil figure	Double-pancake coil
Wire length	52 m
Insulated wire width	10 mm
Insulated wire	200
thickness	200 µm
Inner diameter	219 mm
Outer diameter	240 mm
	Copper plated IBAD/
Wire type	CVD-GdYBCO tape coated
	conductor
Turns	34 / PC
Mold	Paraffin

Fig. 2 View of DP coil for the hoop stress test.

2-2. 液体窒素中での通電試験

Fig. 3,4に, 超電導層内巻き、外巻きのDPコイルの液体窒素温度における,コイルの通電結果をそれぞれ示す。図中のお upper は DP コイルの上側コイルを lower は下側コイルを指し,モールド前後およびモールド後液体窒素と室温で冷却サイクルを6回経た後の I-V 特性を示している。液体窒素温度におけるコイル I_cは線材の I_c のばらつきに起因して測定箇所で若干の差異はあるが 110-120Aで,n値は 20-30で,超電導層が内側巻でも、外側巻でも特に違いは見いだせなかった。通電特性の測定結果はモールド前後,冷却サイクル前後で変化せず,これらのプロセスではコイル中の線材の劣化がない,すなわち剥離が発生していないことを示している。

Fig. 3 I-V characteristics at 77 K of DP coil wound superconducting layer on the inside of turns

Fig. 4 I-V characteristics at 77 K of DP coil wound superconducting layer on the outside of turns

2-3. フープ応力試験

液体へリウムにより SP コイルを 4.2K まで浸漬冷却し、 東北大学金属材料研究所附属強磁場超伝導材料研究 センターにある,大口径無冷媒超伝導マグネットを用い て, 8T のバックアップ磁場中でコイル通電することにより, 本 DP コイルのフープ応力耐性を検証した。

Fig. 5 に, 超電導層内巻コイルの外部磁場 8T におけ る通電結果を示す。1度目は 1,000A まで通電し, その 後, 使用した電源の最大電流である 1,500A までの通電 を行ったが, 抵抗発生は観測されなかった。Fig. 5 には コイルの電極から電極までの通電結果のみが示されて いるが、DP コイルの上側コイル、下側コイルおよび中間 部も電圧発生は認められなかった。さらに、通電の掃引 速度によって誘導される電圧は Fig. 5 に示された値と、 上側コイルおよび下側コイルに誘導された電圧の合計 はよく一致しており、コイルが通電時にも健全であったこ とが確認された。

8T バックアップ磁場中, 通電時のコイル内部の応力を, BJR の関係を用いて計算した結果を Fig. 6 に示す。ここ で, B は磁場, J は電流密度, R は半径である。ここで、 線材に負荷される応力は高強度の Hastelloy 基板が負 担する割合が極めて大きいため、厚さ0.1 mmの基板が 全て応力を負担するとして算出している。この結果から, 最大で約1.7 GPa の電磁力がコイルにかかったことにな る。フープ応力試験後、液体窒素中でコイル通電を 行ったところ, Fig. 3 に示した I-V 曲線と同様のコイル 通電特性を示した。したがって, フープ応力試験で 1.7GPa の応力が加わっても, 本 DP コイルは健全性を 維持していることが確認できた。

Fig. 5 I-V characteristics of DP coil wound superconducting layer on the inside of turns in 8 T external magnetic field. Bright line: excitation up to 1,500 A.

Fig. 6 Calculated stress distributions of DP coil with various transport current in n 8 T external magnetic field.

Fig. 7 に 超電導層を外側にした DP コイルの通電特 性を示す。超電導層外巻コイルも超電導層内巻コイル 同様に 1,000 A 通電では何ら異常は認められなかった が,通電電流を増大させたところ約 1300A 保持中に焼 損した。実験終了後に調査したところ,下側コイルの内 側が焼損し,コイル外側と上コイルにまで焼損部分が広 がっていることが分かった。Fig. 8 に解体調査によって 観察された焼損の状況を示す。上下各コイルの焼損部 分を切断し,巻線を解いてターンごとに線材を並べて写 真で示したものである。この焼損は,コイルの一部分で 熱暴走がおき,ホットスポットへと発展したと予想される。 今後,局所的な熱暴走がホットスポットに至る場合の検 出と保護が,高温超電導コイル開発における重要な今 後の課題となってくる。

Fig. 7 I-V characteristics of DP coil wound superconducting layer on the outside of turns in 8 T external magnetic field. Holding transport current of 1,300 A in 3rd excitation, quench was occurred from lower coil.

Fig. 7 View of coil conductors cut from DP coil wound superconducting layer. Burn out seemed to be occurred from the innermost layer of lower coil

3. まとめ

大規模 SMES のコイル化要素技術を開発するため、Y 系線材の絶縁被覆やモールド方法を検討してダブルパ ンケーキコイルを製作し、フープ応力特性を評価した。 フープ応力試験は液体へリウムで 4.2 K に浸漬冷却し、 8 Tの外部磁場中でコイル通電して行った。超電導層内 巻きコイルでは 1,500 A を通電し、線材基板に対して最 大 1.7 GPa 級のフープ応力に耐える構造のコイルを作 製できたことを実証した。超電導層外巻コイルでは、 1,300 A の保持で焼損がおこり、今後熱暴走の検出と保 護が高温超電導コイル開発における重要な課題とな る。

謝辞

本研究は、NEDOの委託事業「イットリウム系超電導電力機器技術開発」の一環として実施したものである。

参考文献

- K. Higashikawa, T. Nakamura, M. Sugano, K. Shikimachi, N. Hirano, S. Nagaya, *IEEE Trans. Appl. Supercond.*, vol. 18, pp. 758-761, 2008.
- [2]K. Shikimachi, N. Hirano, S. Nagaya, H. Kawashima, K. Higashikawa, T. Nakamura, "*IEEE Trans. Appl. Supercond.*, vol. 19, pp. 2012-2018, 2009.
- [3] 式町浩二、玉田勉、成瀬光人、平野直樹、長屋重 夫、淡路智、西島元、渡辺和雄、花井哲、石井祐介、 川島秀一:東北大学金属材料研究所強磁場超伝導 材料研究センター、平成 21 年度年次報告、pp. 33-35.
- [4] 式町浩二、平野直樹、長屋重夫、淡路智、渡辺和 雄、西島元:東北大学金属材料研究所強磁場超伝 導材料研究センター、平成22年度年次報告、pp. 169-171.