強磁場中における銅電析過程の解析 Analysis of Copper Electrodeposition Process under a High Magnetic Field

埼玉県企業局 森本 良一 早大・高等研 杉山 敦史 職業大 青柿 良一 東北大・金研 茂木 巖 R. Morimoto¹, A. Sugiyama², R. Aogaki³ and I. Mogi⁴ ¹ Saitama Prefecture Enterprise Bureau ² Waseda Institute for Advanced Study ³ Polytechnic University ⁴ Institute for Materials Research, Tohoku University

1. はじめに

磁場中での電析では、磁場と電極の配置、過電圧な どの条件によってさまざまな析出形態が得られる。電極 面に垂直に磁場が加わる場合には、ローレンツカによ る渦状のマイクロ MHD (Magnetohydrodynamic)流れに より三次元核の成長が局部的に抑制され、マイクロミス テリーサークル呼ばれる規則的な孔の配列が形成され る[1]。一方、電極面に平行に磁場が作用する平行磁場 中では、電極面に平行な層流(MHD 流れ)の中に生じ る多数の対流セル(第一マイクロ MHD 流れ)によって、 三次元核生成が抑制されて平坦な析出面が得られる (第一マイクロ MHD 効果)。さらに比較的高濃度の硫酸 銅溶液中での銅の長時間電析では、より大きな対流セ ル(第二マイクロ MHD 流れ)により反対に反応が促進さ れ、直径 100 µm 程度の二次粒子を形成させる(第二マ イクロ MHD 効果)[2, 3, 4]。

これらはいずれも、核生成によって生じる非平衡ゆら ぎ[3]と対流セルが相互作用することにより生じる現象で ある。第一マイクロ MHD 効果は、三次元核生成を支配 する対称性の非平衡ゆらぎが第一マイクロ MHD 流れ によって安定化する反応抑制効果であるが、第二マイク ロ MHD 効果は、二次元核成長を支配する非対称性の 非平衡ゆらぎ[5]が第二マイクロ MHD 流れによって不安 定化することによる反応促進効果である。

ここで、第一マイクロ MHD 効果の析出形態変化への 影響としては、(1)第一マイクロ MHD 効果による 0.1 µm 以下の三次元核形成への干渉効果と(2)通常の三次元 核生成への MHD 効果による生成促進効果が考えられ る[6]。また、第二マイクロ MHD 効果については、上記 の MHD 効果、第一マイクロ MHD 効果に加えて 10 µm 以上の二次元核生成への促進効果が考えられる。

本報においては,実験的にはさまざまな検討がなされていた第二マイクロ MHD 効果についての理論計算 を行った結果を報告する。すなわち,第二マイクロ MHD 流れと二次粒子が自己組織化される過程の理論 計算結果を検討した。

また,これまでの磁場効果についての検討は,硫酸 銅及び硫酸の硫酸酸性硫酸銅溶液という基本浴に対 するものであり,硫酸銅溶液中に特異吸着アニオンであ る塩化物イオンが添加されている場合については検討 されていなかった。そこで、今回はこの場合の磁場効果 についても結果を述べる。

2. 第ニマイクロMHD効果

第二マイクロMHD効果は、電析時の電気二重層(ヘルムホルツ層)への水素イオンの吸着による、電気二重 層過電圧の正へのわずかな変動から起こる。その結果、 二次粒子の先端では底部よりも濃度過電圧が小さくなり、 先端の反応抵抗が小さくなることから、析出が促進され、 非平衡ゆらぎの不安定化を招き、二次粒子が形成され る。ここで理論計算においては、MHD 電極に一定の電 位ステップを印加した後、十分に長い時間が経過し、反 応や MHD 流れが定常状態をとるようになった状態をス タートとする。このとき溶液中で生じる非平衡ゆらぎは次 のような方程式により表される。

$$\begin{split} \frac{\partial b_z}{\partial t} &= \eta \, \nabla^2 b_z + B_0 \, \frac{\partial w}{\partial y} - \left\langle u^* \right\rangle \frac{\partial b_z}{\partial x} \\ \frac{\partial j_z}{\partial t} &= \eta \, \nabla^2 j_z + \frac{B_0}{\mu_0} \, \frac{\partial \omega_z}{\partial y} - \left\langle u^* \right\rangle \frac{\partial j_z}{\partial x} - \frac{1}{\mu_0} \, \frac{d \left\langle u^* \right\rangle}{dz} \frac{\partial b_z}{\partial y} \\ \frac{\partial \omega_z}{\partial t} &= v \, \nabla^2 \omega_z + \frac{B_0}{\rho} \, \frac{\partial j_z}{\partial y} - \left\langle u^* \right\rangle \frac{\partial \omega_z}{\partial x} \\ \frac{\partial}{\partial t} \, \nabla^2 w &= v \, \nabla^4 w + \frac{B_0}{\rho \mu_0} \, \nabla^2 \left(\frac{\partial b_z}{\partial y} \right) - \left\langle u^* \right\rangle \nabla^2 \left(\frac{\partial w}{\partial x} \right) + \frac{d^2 \left\langle u^* \right\rangle}{dz^2} \left(\frac{\partial w}{\partial x} \right) \\ \frac{\partial c_m^c}{\partial t} &= D_m \nabla^2 c_m^a - L_m w - \left\langle u^* \right\rangle \frac{\partial c_m^a}{\partial x} \end{split}$$

ここで b_{z} , j_{z} , a_{z} および w はそれぞれ磁束密度ゆらぎ, 電流密度ゆらぎ, 渦度ゆらぎそして速度ゆらぎのz成分 である。 c_{m}^{a} は二次元核生成による非対称濃度ゆらぎ, B_{0} は印加磁束密度, $\langle u^{*} \rangle$ は境界層の平均速度, L_{m} は 拡散層の濃度勾配である。上記の 5 式を解いて得られ る対流拡散層の平均厚さの関数を $f(\langle \delta_{c} \rangle)$ とすると, 対流

$$\frac{d\langle \delta_c \rangle}{dt} = -f(\langle \delta_c \rangle)(\delta_c \rangle)$$

が導かれる。ここで平均厚さを求めると、溶液中での非対称性ゆらぎのスペクトルは、kをゆらぎの波数として、

$$P_{\text{int}}(k_x, k_y)^a \equiv \frac{a^{+2}}{\pi} \exp\left(-a^{+2}k^2\right)$$

となる。ここで, a^+ は非対称ゆらぎの自己相関距離で $\langle \delta_c
angle/m$ に等しい。また,mは $\langle \delta_c
angle$ に含まれる厚み方向の

第二マイクロMHD流れの対流セルの数を意味する。

二次元核生成にともない電気二重層で形成される非 対称性ゆらぎは、溶液中では第二マイクロ MHD 流れの 作り出すゆらぎに支配される。このゆらぎは、溶液を3次 元格子で分割して各格子点に乱数を割り振ることで再 現でき、電流密度ゆらぎや速度ゆらぎ、表面形態が求ま る。ここで速度ゆらぎのz 成分以外の x, y方向成分は、

 $u = \frac{1}{k^2} \left(\frac{\partial^2 w}{\partial x \partial z} + \frac{\partial \omega_z}{\partial y} \right)$

- $v = \frac{1}{2} \left(\frac{\partial^2 w}{\partial z} \frac{\partial \omega_z}{\partial z} \right)$
- $k = \frac{1}{k^2} \left(\frac{\partial y \partial z}{\partial y \partial z} \frac{\partial x}{\partial x} \right)$

で表され,これらを図示すると,Fig.1のようになる。非対称性ゆらぎのサイズに対応した第二マイクロMHD流れの対流セルが形成されていることが示されている。計算条件は,硫酸銅100 mol m⁻³と硫酸 500 mol m⁻³,磁束密度14T である。

Fig. 1 The second micro-MHD flows at 14 T. (a) Horizontal motion at $z = 30 \ \mu m$, (b) cross-sectional motion.

3. 塩化物イオン添加時の磁場効果

3-1. 実験条件

平行磁場中で,硫酸銅 300 mol m⁻³と硫酸 500 mol m⁻³ からなる硫酸銅溶液を用いて定電位電解を行った。 塩化物イオンを塩酸として 50 mg L⁻¹添加し,無添加(0 mg L⁻¹)の場合と比較した。溶液は,アルゴン通気により 溶液中の溶存酸素を除去してから,温度 15±1 ℃で 行った。磁場の条件としては,冷凍機冷却超伝導マグ ネット18T-CSMを使用して磁束密度を1 T,5 T,10 T,18 Tとした。電極には,MHD 電極(作用極,対極:銅板(10 ×10 mm²))を用いた。照合極には,直径 1 mm の銅線 の断面以外をエポキシ系樹脂により被覆して,ルギン管 を介して使用した。過電圧を -0.2 V, -0.4 V として,電 析開始後 30 s での電流密度を測定した。

3-2. 結果と考察

銅電析での塩化物イオンの効果は、塩化物イオンの 表面吸着と形成した中間生成物の表面吸着によって生 じるといわれ、塩化物イオンの添加濃度によって、反応 機構への添加剤効果が異なることが知られている[7, 8]。 津留ら[8]の報告によると、分極曲線の測定から、濃度 が 50 mg L⁻¹ 程度では中間生成物の電極表面への吸 着による反応の抑制効果よりも、電極表面に吸着する 塩化物イオンによる反応の促進効果のほうが大きくなる ことを報告している。本報告における溶液の硫酸銅濃度 では、律速過程は、物質移動と電荷移動過程の混合律 速状態にある。そのため、過電圧の条件により、第一マ イクロMHD効果とMHD効果の作用する割合が変化す ると考えられる[7]。

Fig. 2 に塩化物イオン添加の有無による磁場中での 電流密度を測定した結果を示す。塩化物イオンを添加 すると、第二マイクロ MHD 効果により二次粒子の成長 が促進され、電流値が磁場とともに増加する。本理論解 析によると、水素イオン同様、強い特異吸着アニオンに より、二次元核先端の反応抵抗が減少するためである。

Fig. 2 The current densities in copper deposition at 30 s under various magnetic fields. Concentration of the chlorine ion are \Box : 0 mg L⁻¹, \blacksquare : 50 mg L⁻¹. Overpotentials are (a) -0.2 V, (b) -0.4 V.

4. まとめ

非対称性ゆらぎと第二マイクロMHD流れが,相互に 干渉する様子を,理論計算から導いた。また,強い特異 吸着性アニオンである塩化物イオンを添加した場合に おいても,水素イオン吸着の場合同様,第二マイクロ MHD 効果が発現することがわかった。

参考文献

- A. Sugiyama, M. Hashiride, R. Morimoto, Y. Nagai and R. Aogaki, Electrochim. Acta, 49, 5115 (2004).
- [2] R. Aogaki, R. Morimoto and A. Sugiyama, ECS Transactions, vol. 13, no. 16, p. 15 (2008).
- [3] 森本良一, 矢澤貞春, 青柿良一, 杉山敦史, 茂木 巌, 東北大学金属材料研究所強磁場超伝導材料 研究センター平成 19 年度年次報告, 164 (2008).
- [4] R. Aogaki, R. Morimoto and M. Asanuma, J. Magnetism and Magnetic Materials, 322, 1664 (2010).
- [5] M. Asanuma, A. Yamada and R. Aogaki, Jpn. J. Appl. Phys., 44, 5137 (2005) など.
- [6] 森本良一, 矢澤貞春, 青柿良一, 杉山敦史, 齋藤 誠, 表面技術, 59, 408 (2008).
- [7] 沖猛雄, 興戸正純, 市野良一, 周延伶, 大塚敦, 資源·素材学会誌, 106, 539(1990).
- [8] 津留豊, 蒲地耕三, 徳永純一, 表面技術, 55, 423 (2004).