Magnetic Properties of Nd-Fe-B Sintered Magnets Annealed in Strong Gradient Magnetic Fields

ネオジム系焼結磁石の強勾配磁場中熱処理と磁気特性

Grain-boundary diffusion processing (GBDP) of Dy source from the surface of sintered Nd-Fe-B magnets is paid much attention as a promising method to save the usage of an important rare metal, Dy. However, it is difficult to apply GBDP to large-sized bulk magnets since the diffusion depth is limited to as much as 5 mm. On the other hand, we noticed that the paramagnetic susceptibility of Dy^{3+} is about an order of magnitude larger than that of Nd³⁺, located in the grain boundary "Nd-rich" phase. We therefore investigated the effect of strong gradient magnetic fields on the GBDP in sintered Nd-Fe-B magnets. Shown in the figure are the demagnetization curves of sintered Nd-Fe-B magnets for which sputter-deposoted Dy was diffusion processed at $T_{diffusion}$ =850°C under the strong gradient magnetic fields of 18T-CSM. Coercivity of the magnetic GBDP sample is apparently larger than that of the reference sample, suggesting that a magnetic-force-assisted diffusion of Dy is working.

H. Kato¹, Y. Mizuno¹, K. Koike¹, K. Takahashi²

¹ Graduate School of Science and Engeneering, Yamagata University

² Institute for Materials Research, Tohoku University

拡散深さの限界が課題となっている ネオジム焼結磁石の Dy 粒界拡散法を克服するため, 強勾配磁場中で Dy の粒界拡散を検討した. その結果, 上図のように有意な保磁力向上 効果を観測することができた.

加藤 宏朗¹,水野善幸¹,小池邦博¹,高橋 弘紀² ¹山形大学大学院理工学研究科,²東北大学金属材料研究所