強磁場・低温環境下におけるカーボンナノ物質生成実験 Experiments of Creating Carbon Nanotubes at Low Temperature and High Fields

重松利信¹, 川崎仁晴¹, 富岡孝裕¹, 高崎建¹,今坂公宣², 淡路智³ ¹佐世保高専,²九産大·工,³東北大·金研 T. Shigematsu¹, H. Kawasaki¹, T. Tomioka¹, K.Takasaki¹, K. Imasaka² and S. Awaji³ ¹SASEBO National College of Technology ²Faculty of Engineering, Kyushu Sangyo University ³Institute for Materials Research, Tohoku University

1. はじめに

飯島らが円筒状 電子ネットワークを持つかご状 炭素物質(通称:Carbon Nano Tube)を1991年に発 見して以来、その基礎的研究や実用化を目指した応 用研究が国内外で盛んに研究されており[1],[2]、超 高速電子デバイスへの応用や超高分解能顕微鏡への 応用など様々な試案が成され、今後の産業界を大き く発展させる可能性のあるナノ技術に大きな期待が 寄せられている。

我々は大量生産が可能な液体中放電実験に着目し、 純水中での放電実験や液体窒素中,液体へリウム中 での生成実験を行ってきた[3],[4]。純水中や液体窒 素中での放電実験は国内外の機関でも成されている が[5][6][7][8][9]、液体へリウム中での放電実験は 世界的にも例はなく、本研究が唯一である。我々は これまでの研究によって、液体へリウム中放電法による カーボンナノナノチューブの生成条件を導出し、生成に 成功した[4]。

本研究を更に進めるためには、カーボンナノ物質 の生成を強磁場下で行うことにより、カーボンのク ラスタリングは指向性の強い生成が期待でき、新規 なカーボンナノ物質の発見の可能性が非常に高くな ると考えており、新規な物質の発見が本研究のモ チィベーションである。

2. 実験装置

実験装置の概略図を Fig.2 に示す。実験装置は魔 法瓶構造を持つ透明なガラスデュワーと放電実験用 部品から成っており、デュワーは液体窒素デュワー と液体ヘリウムデュワーの2種類からなる。液体窒 素デュワーの上端部は大気解放であるが、液体ヘリ ウムデュワーはリークタイト構造とし、必要に応じ て真空ポンプを通して排気が可能な構造としている。 それによって、液体ヘリウム温度である 4.2Kから 超流動ヘリウム温度である 2Kまでの実験を可能に している。実験空間の温度はセル下部に取り付けた 酸化ルテニウム温度計によって測定する。

デュワー下部は無冷媒型超伝導磁石の室温ボアに 合わせて、最外径が100mmに設計した。今回の実験 で使用した無冷媒型超伝導磁石は6T220-CSMであり、 ボアは220であるために、寸法的には余裕があり、 鏡を用いて放電の状況を確認するシステムを構築し た。一方からLED光を入射し、その陰影で電極の放 電状況を確認する。確認は高速度カメラ(17000fps) で行った。

放電電極には陽極,陰極ともに 99.99%のカーボンロッドを用いた。また、放電時の放電特性(電流 電圧特性)は回路に直列に入れた1の標準抵抗の 両端電圧測定から放電時の電流を,電極の両端の電

Fig. 1 Pulsed arc-discharge experimental setup.

圧を直接測定することによって放電時の電圧を測定 した。測定には 200MHz のデジタルオシロスコープを 用いて観測する。

また、生成物は放電実験後、室温に戻した実験セル部から生成物を回収し SEM 或いは TEM を用いて精査する。

ところで、低温液体中の絶縁破壊電圧は原らに よって表1のように実験的に決められているが[10]、 これまでの我々の実験では、その何倍になっている 可能性があった。そこで、今回の実験は絶遠破壊電 圧も調べた。

Table 1 The relation between breakdown-voltage and gaps[10].

	絶縁破壊電圧
	(ギャップ長 d)
液体窒素 at 77K	29d ^{0.8} kV
液体ヘリウム at 4.2K	21.5 d ^{0.8} kV
超流動ヘリウム at 2.0K	21.5 d ^{0.8} kV

3. 実験および結果

実験では室温から窒素温度に予冷した後に液体ヘリ ウムを輸送し、実験空間を液体ヘリウムで満たす。その 後、無冷媒マグネット(6T220-CSM, 10T100-CSM)に セットし、磁場を印加し、放電実験を行う。この度の実験 では3T,5T,7Tと10Tでのカーボン放電実験を行った。 液体温度は、液体ヘリウムを用いて4.2K,2.0Kと変化さ せた。それぞれの温度,それぞれの磁場で放電実験を 行った後に,液体は蒸発させ内部のカーボン生成物を 回収し、SEM 観察あるいは必要に応じて TEM 観察を 行った。

Fig.2 に 2.0K 超流動ヘリウム中の磁場印加なしと 10T 印加時の代表的な放電特性を示した。どちらの場合も 100nsec 程度の早い反応であるが,10T 印加時の方が 幾分激しい放電状態に入っていることが分かる。

Fig.3 - Fig.6 に SEM 観測結果を示す。Fig.3 は 4.2K 液体ヘリウム中,磁場無での放電でのカーボンナノ物 質生成実験の結果、Fig.4 は 4.2K液体ヘリウム中放電, 磁場 10T でのカーボンナノ物質生成実験の結果、Fig.5 は 2.0 K 超流動ヘリウム中放電,磁場無でのカーボンナ ノ物質生成実験の結果、Fig.6 は 2.0K 超流動ヘリウム中, 磁場 10T でのカーボンナノ物質生成実験の結果である。 磁場 0, 3, 5, 7T で液体温度 4.2K, 2.0K での放電実験で は、いずれもカーボナノ物質の生成は確認出来なかっ た(Fig.3-5 と同様な SEM Imaging)。ところで、超流動へ リウム中 10T での放電実験では針状のカーボンナノ物 質の生成が確認できた(Fig.6)。しかしながら,生成率が 非常に低く、TEM 像を観測するには至っていないので、 大変残念ながら、ナノチューブかどうかは確認できてい ない。

Fig. 2. Typical waveforms of voltage, current for intermittent arc discharge in superfluid liquid helium.

Fig. 3. SEM Imaging. At 4.2K, B=0T.

Fig. 4. SEM Imaging. At 4.2K, B=10T.

Fig. 5. SEM Imaging. At 2.0K, B=0T.

Fig. 6. SEM Imaging. At 2.0K, B=10T.

更に、今回の実験では、あらかじめ予測した放電開 始電圧(絶縁破壊電圧)で放電が起こらないことがあっ た。そこで、液体窒素中,液体ヘリウム中,更に液体直 上での絶縁破壊電圧とギャップの関係を調べた。

Fig.7 に液体窒素中及び液体窒素直上での絶縁破 壊電圧とギャップの関係を示した。ギャップが 0.1 mm程 度と小さい時には原らの経験式とよく一致しているが、 0.2mm, 0.3mmとなるに従って、開きは大きくなる。

Fig. 7. Breakdown-voltage vs. gaps in liquid nitrogen.

Fig.8 に液体ヘリウム中及び液体ヘリウム直上での絶縁破壊電圧とギャップの関係を示す。液体窒素の場合とまったく様相が異なり、ギャップが小さい時には原らの経験式とよく一致しているが、0.5mm では急激に大きくなり比例的とは言い難い結果となった。

Fig. 8. Breakdown-voltage vs. gaps in liquid helium.

4. まとめ

我々は低温液体中で、かつ強磁場中での放電実験 にり、カーボンナノチューブの生成実験を行った。その 結果、初めて超流動液体ヘリウム,10Tの磁場中放電 で初めてカーボンナノ生成物を観測できた。しかし、生 成率が非常に低く,その詳細までの観測には至ってい ない。まだ詳細な実験条件の導出には至っていないの で、その点を踏まえ今後の実験へと繋げたい。

また、今回の実験で低温液体中での絶縁破壊電圧と ギャップの関係を新たに調べたところ、これまで言われ ていたものと数倍の開きがあることが分かった。

参考文献

 J. Kong, N. Franklin, C. Zhou, M Chapline, S. Peng, K. Cho and H. Dai, <u>Science</u> 287 p.622 (2000).

[2] C. Cantalini, L. Valentini, L. Lozzi, I. Armentano, J. Kenny and S. Santucci, <u>Sensors Actuators B</u> **93** p.333 (2003).

[3] H. Kawasaki, T. Ohshima, Y. Yagyu, Y. Suda, <u>Transactions of the Materials Research Society of Japan</u>, <u>33</u> [3] p.655 (2008).

[4] T. Shigematsu, H. Kawasaki, Y. Johno, T. Ohshima, Y. Yagyuu, W. M. Guan and Y. Suda, <u>J. Plasma Fusion</u> <u>Res. SERIES</u>, **8**, p599 (2009).

[5] K. Ong, K. Zeng and C. Grimes, <u>IEEE Sensors J.</u> 2 p.82 (2002).

[6] N. Sano, J. Nakano and T. Kanki, <u>Carbon</u> **42**, pp. 686 (2004).

[7] O. Varghese, P. Kichamber, D. Cong, K. Ong and C. Grimes, <u>Sensors Actuators B</u> <u>81</u> p.32 (2001).

[8] J. Tamaki, J. Niimi, S. Ogura, S. Konishi, <u>Sensors</u> and Actuators <u>B</u>, 117, p.353 (2006).

[9] J. Suehiro, K. Imasaka, Y. Ohshiro, G. Zhou, M. Hara and N. Sano, Jpn. J. Appl. Phys., <u>42</u> pp. L 1483 (2003).

[10] M.Hara et. al , <u>Cryogenics Eng.</u>, <u>24</u> pp. 72 (1989).