高臨界電流値を有する希土類系高温超伝導線材の電流輸送特性 Current Transport Properties of RE123 Coated Conductor

井上 昌睦¹,山口 仁正¹,榊原 崇志¹,今村 和孝¹,東川 甲平¹,木須 隆暢¹,
淡路 智²,渡辺 和雄²,飯島 康裕³,斎藤 隆³,飛田 浩史⁴,吉積 正晃⁴,和泉 輝郎⁴
¹九大・シス情,²東北大・金研,³フジクラ,⁴ISTEC・超電導工研
M. Inoue¹, Y. Yamaguchi¹, T. Sakakibara¹, K. Imamura¹, K. Higashikawa¹, T. Kiss¹,

M. Inoue¹, Y. Yamaguchi¹, T. Sakakibara¹, K. Imamura¹, K. Higashikawa¹, T. Kiss¹, S. Awaji², K. Watanabe², Y. Iijima³, T. Saitoh³, H. Tobita⁴, M. Yoshizumi⁴ and T. Izumi⁴ ¹Graduate School of Information Science and Electrical Engineering, Kyushu University ²Institute for Materials Research, Tohoku University ³Fujikura Ltd.

⁴Superconductivity Research Laboratory, ISTEC

1. はじめに

優れた磁場中臨界電流特性を有する希土類系高温 超伝導(REBa₂Cu₃O_y, RE=Rare Earth, 以後 RE123 と略記)線材の開発研究が国内外において精力的に 進められている。現在、600A/cm-w(@77K、自己磁 場中)を超える臨界電流(I_c)値を有する RE123 線 材が 600m 長にわたって作製されるに至っており、 高性能長尺線材の開発は着実に進展している[1]。上 記線材と同程度の性能を有する GdBa₂Cu₃O_v (GdBCO)線材の強磁場 (>20T)中の臨界電流特性 を調べたところ、実用上重要な工学的臨界電流密度 (Je、Icを線材全体の断面積で除したもの)が、20K の温度であっても、PIT法によって作製されたNb3Sn 線材を凌駕していることが確認されている[2]。この ような優れた磁場中特性が確認される一方で、更な る高 Ic 化への取り組みも進められている。これは、 高L。化が、強磁場発生マグネットを中心とした各種 コイル応用における高特性化のみならず、小型化や 動作温度の向上に伴う低コスト化といった超伝導応 用機器の普及にも資するからである。

高 I。化の方法としては、超伝導層の厚膜化及び人 エピンニングセンターの導入が挙げられる。超伝導 層の厚膜化は現在開発されているRE123線材のよう なコート線材で有効な手法である。すなわち、線材 全体の断面積に占める超伝導領域の割合が少ない (1/100~1/50 程度) ことから、膜厚の増大に伴う J。 の低下が小さくて済む利点がある。しかしながら、 パルスレーザ蒸着 (Pulsed Laser Deposition、PLD) 法においては、膜厚の増大とともに a 軸配向粒や異 相が増加し、Ic値が飽和することが知られている。 この振る舞いは磁場中 Icに対しても同様である。一 方、人工ピンニングセンターの導入は、磁場中しを 直接向上させられることから、様々な手法や材料が 提案されている。PLD 法においては、ターゲット材 に不純物を添加する手法が、簡便で線材作製速度を 含めたコストの面からも有利であることから、最も 積極的に取り組まれている。添加する材料には BaMO₃(BMO、M=Metal、Zr、Sn 等)が用いられて いる。BMO の中でも、近年、国際超電導産業技術研 究センターにより発見され注目されているのが、

BaHfO₃ (BHO) である。BHO の特徴は、BaZrO₃と 異なり、磁場中 J_cが膜厚の増加に対してほとんど低 下しない点にある。これにより、77K、3T での I_c値 (角度に対する最小 I_c値)としては世界最高レベル の 84.8A/cm-w を、超伝導層膜厚 2.9μm にて達成し ている[3]。

上記のように、BHOの導入及びその厚膜化により、 磁場中の臨界電流特性が大幅に向上することが確認 されているが、低温、強磁場領域においても有効で あるかは今のところ明らかとなっていない。そこで、 本研究では、新たな人工ピンニングセンター導入法 として注目されているBHOを添加したGdBCO線材 の臨界電流特性を広範な温度、磁場、磁場印加角度 に亘り実験により明らかとし、人工ピンニングセン ターの有効性を検証する。

2. 実験

実験に用いた RE123 線材の超伝導層は、3.5mol%の BHO を添加した GdBCO ターゲットを用いて PLD 法に て作製されており、膜厚は 3.2μ mである。基板には Ion-Beam Assisted Deposition (IBAD) 法による配向中 間層が形成されたいわゆる IBAD 基板を用いている。 77K、自己磁場での I_c 値は約 690A/cm-w であった。

電流輸送特性の詳細な実験を行うため、上記線材 を 1cm 長程度切り出した後、フォトリソグラフ法を 用いたウェットエッチングプロセスにより、長さ 500µm、幅 60µm 程度のマイクロブリッジ形状に加 工し、実験用の試料としている。

実験は、直流四端子法による電界-電流密度(E-J) 測定を、温度、磁場、磁場印加角度を系統的に変化 させながら行った。温度は、液体ヘリウムの気化ガ スの流量及び昇温用ヒータの出力を調整することに より制御している。磁場は、超伝導マグネット (20T-SM)を用いて印加しており、最大印加磁場は 17Tである。磁場印加角度は、試料ステージをステッ ピングモータで回転させることにより変化させてい る。なお、磁場の印加角度は、膜面に平行な方向 (B//ab)を0°、膜面に垂直な方向(B//c)を90° と定義している。

3. 実験結果及び考察

実験によって得られた E-J 特性から、電界基準 1µV/cmにてJ_cを求めた後、1cm幅あたりのI_c値に換算 し、その温度、磁場依存性をまとめたのが Fig.1 である。 また、同図には比較用の参照データとして、人工ピンニ ングセンターを導入していない 2.5µm 厚の超伝導層を 有する 600A 級 GdBCO 線材の特性[2]を白抜きシンボ ルにて示している。77K や 65K の液体窒素利用領域で は、自己磁場近傍を除く広い磁場領域に亘る I_c値の向 上が見られるとともに、不可逆磁場も向上していることが 確認できる。例えば、77K、3T では 90A/cm-w の I_c値が 得られており、これは人工ピン未導入線材の約 3 倍であ る。低温度領域でも人工ピンの寄与と思われるI_c値の向 上が見られており、20K、17T では、人工ピン未導入線 材の 370A/cm-w に対して 700A/cm-w の I_c値が得られ ることが確認された。

Fig.2に巨視的ピン力密度の温度、磁場依存性を示す。 BHO の導入に伴い、ピンニング特性そのものが大きく 向上しており、例えば、77Kでは、9GN/m³を超える巨視 的ピン力密度が得られている。巨視的ピン力密度の最 大値の温度依存性について見てみると、ピークが確認 される 77K から 50K のいずれの温度においても BHO 未導入線材の 1.8~1.9 倍程度となっており、また、20K ではピーク値まで観察されていないものの、得られてい る点でのピン力密度は約 1.5 倍を示している。これらの 結果より、広い温度領域に亘ってピンニング特性が向 上していることが明らかとなった。

Fig.1 I_c -*B*-*T* characteristics of GdBCO coated conductors. Closed and opened symbols indicate the I_c for with artificial pinning centers and I_c for without one, respectively.

Fig. 2 Magnetic field dependence of global pinning force density, $F_p(=J_c \times B)$.

Fig. 3 I_c - θ -B characteristics of GdBCO coated conductors at 77K and 65K. Closed and opened symbols indicate the I_c for with artificial pinning centers and I_c for without one, respectively.

			I _{c-min} @77K	I _{c-min} @65K								
	1T	3T	5T	7T	10T	1T	5T	10T				
GdBCO+BHO	145A	80A	32A	11A	1A	475A	204A	67A				
GdBCO	116A	32A	9A	2A	0.05A	410A	102A	22A				

Table 1 Minimum I_c at 77K and 65K

Tuble 2 Thissotispie futio of fe (ut / fit und of fit											
		I _{c-ma}	$_{\rm x}/I_{\rm c-min}$ @	$I_{\text{c-max}} / I_{\text{c-min}} @65\text{K}$							
	1T	3T	5T	7T	10T	1T	5T	10T			
GdBCO+BHO	1.34	1.17	1.83	4.17	32.9	1.40	1.19	1.97			
GdBCO	1.52	2.43	5.76	22.7	642	1.29	1.92	6.01			

Table 2 Anisotropic ratio of I_c ($\cong I_{c-max} / I_{c-min}$) at 77K and 65K

Fig.3 に 77K 及び 65K における Icの角度依存性を示 す。PLD 線材への BMO 添加では、一般に c 軸に強い 相関を有するピンニングセンターが導入されることが知 られており、Icの角度依存性においては、c軸方向に大 きなピークを示す。しかしながら、BHO を導入した GdBCO 線材においては、c 軸方向のみならず、幅広い 角度領域に亘ってIc値が上昇している。このことは、(1) 角度依存性における最小のI。値を底上げし、(2)I。の異 方性を低減させることに寄与することを意味している。角 度依存性における I_c の最小値と、 I_c の異方性の比(I_c の 最大値と最小値の比)とをまとめた Table 1 及び Table 2 を見てみると、両者とも BHO の導入により大きく改善し ていることが分かる。特に基板面に平行方向の角度近 傍(10°~20°)のI。値が向上している点は、同線材を超強 磁場マグネットのインサートコイルとして用いる際に、重 要である。今後は、低温、強磁場におけるLの角度依存 性についても明らかとしていく予定である。

4. まとめ

本研究では、新たなピンニング材料である BaHfO₃ を 添加した GdBa₂Cu₃O_y線材の臨界電流特性を広い温度、 磁場、磁場印加角度領域に亘って実験により明らかとし た。その結果、導入された人工ピンニングセンターは、 液体窒素温度領域から 20K の低温領域に至るまで有 効に作用し、磁場中 I_c の向上が得られることが明らかと なった。線材の高 I_c 化は、強磁場発生マグネットを中心 とした各種コイル応用における高性能化に強く資するこ とから、同線材の更なる特性解明及び高 I_c 化が期待さ れる。

参考文献

- [1] K. Kakimoto et al., *Physica C* 471 (2011) 929-931
- [2] 井上他, 東北大金属材料研究所強磁場超伝導材 料研究センター平成22 年度年次報告(2011) 37-39
- [3] H. Tobita et al., presented at 24th ISS