Effect of crystal orientation on strain dependence of *l*_c for GdBCO coated conductor

諏訪 友音¹, 小黒 英俊¹, 淡路 智¹, 渡辺 和雄¹, 町 敬人², 吉積 正晃², 和泉 輝郎² 東北大·金研¹, 超伝導工研²

T. Suwa¹, H. Oguro¹, S. Awaji¹, K. Watanabe¹, T. Machi², M. Yoshizumi², T. Izumi²,

¹Institute for Materials Research, Tohoku University,

²Superconductivity Research Laboratory, International Superconductivity Technology Center

1. はじめに

希土類酸化物高温超伝導(REBa₂Cu₃O_y, RE = Rare Earth または Y; 以後 REBCO と略記)線材は, 磁場中に おいて高い臨界電流密度を維持することができる. さらに, Hastelloy 基板に由来する優れた機械特性を持つ. これら の特徴は, 強磁場マグネット作製の際に有利に働き, 現 在では 30 T 級超伝導マグネットへの応用などに期待され ている. しかし, REBCO 線材における臨界電流 I_c のひず み依存性はまだ完全には理解されていないため, マグ ネット応用に向けた特性評価が重要である. さらに, ひず み下における超伝導特性は、以下に述べるような複雑な 振る舞いを見せる.

線材長手方向に配向している超伝導層の結晶方位が 異なると、*I*。のひずみ依存性が異なるという結果が報告さ れている[1, 2]. 具体的には、(Y, Gd)BCO線材において、 ひずみを印加する超伝導層の結晶方位を[100]/[010]から [110]へ変化させた際に、*I*。のひずみ依存性が小さくなるこ とが報告されている[1].また、放射光を用いて引張りひず み下における PLD-GdBCO線材の内部ひずみを測定し た結果、超伝導層の配向方位が異なると GdBCOドメイン のひずみ状態が異なることがわかっている.これに REBCOの異方性が加わることで、*I*。のひずみ依存性はひ ずみを加える REBCO の結晶方位に対して変化していると 考えられている[2].

そこで、本研究では PLD-GdBCO 線材の 77 K、磁場中 における、 I_c のひずみ依存性とひずみを加える GdBCO の 結晶方位の関係を調べることを目的として実験を行った.

	1	
Width	2 mm	
Capped layer	Ag (10 μm)	
Superconducting layer	PLD-GdBCO (1 µm)	
Buffer layer	CeO ₂ (500 nm)	
	LaMnO ₃ (30 nm)	
	IBAD-MgO (5 nm)	
	$Gd_2Zr_2O_y(110 \text{ nm})$	
Substrate	Hastelloy (100 µm)	

Table 1 Specifications of the Samples.

2. 実験方法

試料は ISTEC により提供を受けた, PLD-GdBCO 線材 を用いた. 試料の諸元を Table 1 に示す. 任意の結晶方 位にひずみを印加するために, 試料は Fig. 1 のように長 手方向に[100]/[010]配向している線材から, レーザー切 断によって取り出した. 試料の幅は 2 mm とした. 切断方 向と線材長手方向の間の角度を¢ とする. ¢ は 0°, 15°, 30°, 45°とし, それぞれの試料を Gd-0, 15, 30, 45 と呼ぶ. Gd-0 において, ひずみ印加方向は GdBCO の[100]/[010]

Fig.1 The schematic view of the sample. ϕ is defined as an angle between the original tape axis([100]/[010] of GdBCO) and the direction of applied strain (laser cutting).

Fig. 2 The sample stage of the apparatus. The sample was soldered to Cu electrodes and gripped by stainless steel chucks.

となり, Gd-45 においては[110]となる.

 I_c -ひずみ測定は、低温強磁場中引張り装置を用いて測定した.この装置において、試料は電極以外と接触しておらず、その電極が熱収縮によって自由に動くことができる構造であるため、余計な熱応力を加えずに I_c -ひずみ測定を行うことができる.また、試料に加えるひずみと通電方向は平行となる.Fig.2に示すように、試料は電極にはんだ付けされ、ステンレスの板で固定されている.LN₂浸漬冷却により、測定温度を77Kとした.磁場は c軸に平行に0-3 Tまで印加した.試料電圧を4端子法によって測定し、電界基準を1 μ V/cmとして I_c を決定した.ひずみは試料表面に接着したひずみゲージによって測定した.ひずみゲージを試料両面に貼ることでたわみ成分を除去して正確なひずみを測定した.

3. 実験結果

Fig. 3 に, ひずみ印可方向を変化させた GdBCO 線材の、1 T における I_c のひずみ依存性を示す. I_c はひずみの増加とともに, 放物線状に減少した. 実線は Power law[3]によるフィッティング結果である. Power law によって, I_c のひずみ依存性は次式で表わされる.

$$\frac{I_{\rm c}(\varepsilon)}{I_{\rm c}(\varepsilon_{\rm max})} = 1 - a(\varepsilon - \varepsilon_{\rm max})^{\mu}$$
(1)

 ε は印加ひずみ、 ε_{max} は I_c が最大となるひずみを表す.aと uはひずみ依存性の大きさを表すフィッティングパラメータ である.本研究では $u=2, \varepsilon_{max}=0\%$ と仮定した.また,aを ひずみ感受性と呼ぶ. Fig. 4 に、各試料におけるひずみ 感受性の磁場依存性を示す.ひずみ感受性は、磁場の 増加に伴い増加していることがわかった.また、ひずみ印 加方向をGdBCOの[100]/[010]から[110]へと変化させると、

Fig. 3 The strain dependence of the normalized I_c at 77 K and 1 T for GdBCO coated conductors. The sold lines are the fitted results by the power law [3].

Fig. 4 The magnetic field dependence of the strain sensitivity *a* for the samples with various ϕ . The strain sensitivity for each sample increases with the increasing the magnetic field. The magnetic field dependence of the strain sensitivity becomes smaller with larger ϕ .

ひずみ感受性の磁場依存性が小さくなることがわかった.

4. ひずみ感受性と GdBCO 結晶方位の関係

ここでは、GdBCOドメインのひずみ状態を考慮して、*I*。 のひずみ依存性を議論する.まず、ドメインのひずみ状 態を議論する.Fig.5に、試料中のGdBCOドメインの概略 図を示す.以下では、レーザー切断前の試料をオリジナ ル線材と定義する.GdBCO線材は2軸配向しているため、 超伝導層には線材長手方向にa軸かb軸が配向したドメ インが存在する.ここで、a軸が線材長手方向に配向したドメ インをドメインA、b軸が線材長手方向に配向したドメイン をドメインBと定義する.ドメインA、Bにおけるa、b軸のひ ずみを_{Ei}とする.ここで,iはaまたはb軸を表し、jはドメイ ンAまたはBを表す.[100]/[010]配向した線材を用いた放 射光による内部ひずみ測定より、ドメインのa、b軸方向の

Fig. 5 The schematic view of the domains in the samples. The a-(b-) axis of the domain A(B) is oriented along the longitudinal direction of the original tape.

ひずみは印加ひずみに対して直線的に変化することがわ かっている[2]. その関係は,

$$\varepsilon_{i,j} = \alpha_{i,j} \varepsilon \tag{2}$$

と表わされる. $\alpha_{i,j}$ は印加ひずみとドメインのひずみの比を 表し, strain ratio と呼ばれる. 我々のグループにおける測 定では, $\alpha_{a,A} = 0.978$ 、 $\alpha_{b,A} = -0.333$ 、 $\alpha_{a,B} = -0.313$ 、 $\alpha_{b,B} =$ 0.931 ということがわかっている[4]. $\alpha_{a,A} \ge \alpha_{b,B}$ が異なるとい うことは、印加ひずみが同じでもドメインの配向している結 晶方位が異なると、各ドメインのひずみ状態が異なるとい うことを意味している. また、 ϕ を変化させた時の、ドメイン のひずみと印加ひずみの関係は幾何学的に求めることが でき、

$$\varepsilon_{a,A}^{(0)} = \varepsilon_{b,B}^{(0)} = \left(\cos^2 \phi + \nu \sin^2 \phi\right) \varepsilon$$

$$\varepsilon_{b,A}^{(0)} = \varepsilon_{a,B}^{(0)} = \left(\sin^2 \phi + \nu \cos^2 \phi\right) \varepsilon$$
(3)

と表わされる. 区別のため, 上付き文字として(0)をつけた. v はポアソン比であるが, 超伝導体の横方向のひずみ変 化は Hastelloy に従うため[4], この値は Hastelloy のポアソ ン比となる.(3)式ではドメイン A とドメイン B のひずみ状態 は等しくなってしまう. 従って, 実験結果と一致するように strain ratio を用いて次のような補正を行った.

$$\varepsilon_{a,A}(\phi) = (\alpha_{a,A}\cos^2\phi + \alpha_{a,B}\sin^2\phi)\varepsilon = S_{a,A}(\phi)\varepsilon$$

$$\varepsilon_{b,A}(\phi) = (\alpha_{b,B}\sin^2\phi + \alpha_{b,A}\cos^2\phi)\varepsilon = S_{b,A}(\phi)\varepsilon$$

$$\varepsilon_{a,B}(\phi) = (\alpha_{a,A}\sin^2\phi + \alpha_{a,B}\cos^2\phi)\varepsilon = S_{a,B}(\phi)\varepsilon$$

$$\varepsilon_{b,B}(\phi) = (\alpha_{b,B}\cos^2\phi + \alpha_{b,A}\sin^2\phi)\varepsilon = S_{b,B}(\phi)\varepsilon$$
(4)

印加ひずみ ε の係数を $S_{i,j}(\phi)$ とし、 ϕ によって変化する strain ratio を表す.(4)式によって4つのひずみを区別する ことができ、 $\varepsilon_{i,j}$ は ϕ と ε の関数として表わすことができる.

次に試料全体のひずみ依存性を議論する. ここで, I_c の 一軸ひずみ依存性は power law に従うと仮定する. この時, ドメインの a または b 軸にひずみを印加した際の, ドメイン j における I_c は,

$$\frac{I_{c,j}(\varepsilon_{i,j})}{I_{c,j\max}} = 1 - a_i \varepsilon_{i,j}^2$$
(5)

と変化する. *I*_{cj,max}はドメインjにおける*I*_cの最大値を表し, *a*_i は一軸ひずみ効果の大きさを表すパラメータである. 全 微分と偏微分の関係から,ドメインjにおける*I*_cは(5)式より,

$$\frac{I_{c,j}(\varepsilon_{j})}{I_{c,j,max}} = 1 + \frac{\partial I_{c,j}(\varepsilon_{a,j})}{\partial \varepsilon_{a,j}} \varepsilon_{a,j} + \frac{\partial I_{c,j}(\varepsilon_{b,j})}{\partial \varepsilon_{b,j}} \varepsilon_{b,j}$$

$$= 1 - 2a_{a}\varepsilon_{a,j}^{2} - 2a_{b}\varepsilon_{b,j}^{2}$$
(6)

と計算できる. ここでは, c 軸方向のひずみとせん断ひず

Fig. 6 The angular dependence of the strain sensitivity at various magnetic fields. The solid lines are fitted results by the equation (8).

みは無視した. さらに, 試料中を流れる電流の総和とドメ イン A とドメイン B の存在比を考慮すると, 試料全体の *I* のひずみ依存性は,

$$\frac{I_{\rm c}}{I_{\rm c,max}} = 1 - a_{\rm a}\varepsilon_{\rm a,A}^2 - a_{\rm b}\varepsilon_{\rm b,A}^2 - a_{\rm a}\varepsilon_{\rm a,B}^2 - a_{\rm b}\varepsilon_{\rm b,B}^2$$
(7)

と表わされる.(7)式に(4)式を代入することで、試料全体の ひずみ感受性 a を、

$$a = a_{a} \left\{ S_{a,A}^{2}(\phi) + S_{a,B}^{2}(\phi) \right\} + a_{b} \left\{ S_{b,A}^{2}(\phi) + S_{b,B}^{2}(\phi) \right\}$$
(8)

と、 ϕ の関数として表わすことができる.(8)式を用いて、実験値に対してフィッティングを行った結果を Fig. 6 に示す. 内部ひずみ感受性 a_a 、 a_b をフィッティングパラメータとしてフィッティングを行った.フィッティング結果は実験値とよく一致した. Table 2 に各磁場における a_a と a_b の値を示す. 文献値[2]と比較すると、絶対値が 1 桁違うことがわかる.

Table 2 The fitting parameters a_a and a_b at various magnetic fields

Magnetic field [T]	aa	a_{b}
Self field	3.26	-3.19
0.1	3.07	-2.93
0.2	3.48	-3.33
0.3	2.88	-2.66
0.5	3.85	-3.71
1.0	3.47	-3.25
2.0	3.37	-3.02
3.0	4.31	-3.92
Self field [2]	0.329	-0.257

Fig. 7 The relation between the sum of internal strain sensitivity and the magnetic field. The sum of a_a and a_b increases with the increasing a magnetic field.

しかし、*a*aと*a*bの絶対値の差は文献値とほぼ等しくなった. Fig. 7に*a*aと*a*bにおける絶対値の差と磁場との関係を示す. 内部ひずみ感受性の絶対値の差は磁場増加に伴い増加 する傾向が見られた.これらのことから、内部ひずみ感受 性の絶対値よりその差が重要であると考えられる.

5. まとめ

GdBCO 結晶に加えるひずみの方向を変えた状態で,

GdBCO線材における I_c のひずみ依存性を77K,磁場中で測定した.ひずみを加える方向 ϕ を0°から45°([100]/[010]から[110])へ変化させると, I_c のひずみ感受性が小さくなることがわかった.また、全ての ϕ において、磁場増加に伴いひずみ感受性が大きくなることがわかった. I_c の一軸ひずみ効果が power law に従うという仮定の下で、GdBCOドメインのひずみ状態を考慮して計算したひずみ感受性は、実験値とよい一致を示した.また、内部ひずみ感受性のa軸方向とb軸方向の値に関して、その絶対値の差は、磁場増加に伴って増加する傾向が見られた.このことから、 I_c のひずみ依存性においてはこの和が重要であると考えられる.

謝辞

本研究はイットリウム系超電導応用基板技術研究開発業務の一環として,新エネルギー・産業技術総合開発機構 (NEDO)の委託により実施したものである.

参考文献

[1] D. C. van der Laan, *et al.*, *Supercond. Sci. Technol.* **24** (2011) 115010.

[2] M. Sugano, et al., Supercond. Sci. Technol. 25 (2012) 054014.

[3] D. C. van der Laan, *et al.*, *Appl. Phys. Lett.* **90**. (2007) 052506.

[4] H. Oguro, *et al.*, *IEEE Trans. Appl. Supercond.* **23** (2013) 840034.