照射柱状欠陥を導入した YBa₂Cu₃O_y薄膜の高磁場における輸送特性 Transport Properties of YBa₂Cu₃O_y thin films with columnar irradiation defects in high magnetic field

熊本大・工 原子力機構 東北大・金研

知見 康弘,石川 法人 淡路 智,渡辺 和雄

T. Fujiyoshi¹, T. Sueyoshi¹, K. Yonekura¹, F. Mitsugi¹ T. Ikegami¹, Y. Chimi², N. Ishikawa², S. Awaji³ and

K. Watanabe³

¹ Faculty of Engineering, Kumamoto University

² Japan Atomic Energy Agency

³ Institute for Materials Research, Tohoku University

1. はじめに

Y系高温超伝導伝導体は,Bi系高温超伝導体と比 較して高い臨界電流密度J。を有するために,特に次 世代超伝導線材として電力分野への応用が期待され ている.このような超伝導応用では,磁場中におい て,さらなる高J。化が要求されるために,超伝導体 内に侵入している量子化磁束を強く磁束ピンニング することが重要となる.しかしながら,作製の際に 自然生成される格子欠陥では,高温における量子化 磁束の熱揺らぎに対して有効な磁束ピンニングとは ならず,またこれらの欠陥密度は高磁場における磁 束ピンニングするに十分ではない.このために,有 効なピンニングセンターとなり得るナノスケールの 格子欠陥や不純物を,人工的に試料内へ導入する試 みが近年数多く行われている[1-6].

これらの人工ピン導入の試みの中で, BaMO₃ (M=Zr, Sn, など)をピン材料とした混合型ターゲット[2,3]や非混合型ターゲット[4,5]を用いて PLD 法 により薄膜を作製すると,薄膜中に BaMO₃が自己組 織化して,いわゆるナノロッドと呼ばれる1 次元ピ ンが形成されることが報告されている.このナノ ロッドは *c* 軸相関ピンとして作用し,磁場を *B* // *c* に印加した際の *J*_cが飛躍的な向上し, *J*_cの異方性の 改善にも有効である.

BaZrO₃ ナノロッドは代表的なナノロッドであり, その磁束ピンニング特性について,広範囲に調べら れている[2,3]. 一方,BaSnO₃はBaZrO₃より高い J_c を実現するナノロッドとして最近注目されている[4, 5].BaZrO₃とBaSnO₃のナノロッドの違いは,径の 太さとその方向の分散にあり,特に方向の分散は, J_c の磁場角度依存性において大きな影響を与えてい る[5]. J_c の異方性を改善するためには,1次元ピン の方向の分散が J_c の磁場角度依存性に与える影響 について明らかにすることが重要である.

試料中に1次元ピンの方向を制御して導入する 方法として,重イオン照射が挙げられる.重イオン 照射により試料中に導入される円柱状の格子欠陥は, 典型的な1次元ピンであり[7,8],その照射方向を制 御して導入される交差した柱状欠陥による磁束ピン ニング特性についても多くの報告がなされている[9, 10]. ただし、そのほとんどが *B* // *c* での磁束ピンニング特性に対するものであり、*J* の磁場角度依存性における柱状欠陥の交差の影響についてあまり調べられていない.

藤吉 孝則, 末吉 哲郎, 米倉 健志, 光木 文秋, 池上 知顯

本研究では、YBa₂Cu₃O₇₋₆(YBCO)薄膜の c 軸に対 して交差角±6 にて 2 方向から高エネルギーの Xe イオンを照射することで交差した柱状欠陥を導入し、 J_cの磁場角度依存性への1 次元ピンの方向の分散の 影響について調べた.今回、特に J_cの磁場角度依存 性において、柱状欠陥導入により c 軸方向付近に付 加されるピークとその交差角の関係について調べた.

2. 実験

KrF エキシマレーザーを用いた PLD 法により, SrTiO₃ 基板上に YBCO 薄膜を作製した.この薄膜を 幅約 40 μ m,長さ 1 mm のブリッジ状に加工して, 重イオン照射した後,臨界電流密度を測定した.こ れらの試料の膜厚は,280~320 nm であった.

重イオン照射には、日本原子力研究開発機構東海 研のタンデム加速器において Xe イオンを用いた. ここで、Xe を用いた重イオン照射では、電子的阻 止能 Se = 2.9 KeV/Å のとき、 5.0×10^{11} ions/cm²の照射 量まで YBCO 薄膜の超伝導性に大きなダメージを与 えることなく、 J_c の向上を図ることが出来ることが 報告されている[11]. 交差した柱状欠陥を導入する ために、入射イオンの方向は c 軸に対して交差角± θ_i 傾け、またブリッジ方向に対して常に垂直にした. 比較のために、傾斜角 θ_i の平行な柱状欠陥を導入し た試料も用意した.

Table 1 に,今回用いた試料の仕様について示す. 照射エネルギーは 200 MeV または 210 MeV であり, これは傾斜を含めた全ての照射において,入射イオ ンの透過距離は,薄膜の厚さ以上である.それぞれ の照射において,欠陥密度はマッチング磁場に換算 してそれぞれ, B_{ϕ} =2.0 T, 1.5 T になるように照射し た.このため,交差角度が大きいほど,照射量は多 くなる.

臨界電流密度 J_c は、四端子法により電界基準 1 μ V/m を用いて定義した.印加電流の方向は磁場、c軸および柱状欠陥に常に垂直である. J_c の磁場依存 性は、 J_c の磁場角度依存性は 77.3K において c 軸に

Configuration of			Irradiation			
Sample	CDs	θ_{i} [deg.]	$B_{\phi}[T]$	energy	$T_{\rm c} [\rm K]$	α
pa06a	parallel	6	1.5	210	88.1	0.29
sp10	crossed	±10	1.5	210	88.2	0.32
pa06b	parallel	-6	2	200	88.2	0.30
sp25	crossed	±25	2	200	88.2	0.29
pureYBCO	-	-	-	_	88.4	0.48

Table 1 Samples

平行な磁場で測定した.電流と磁場の方向は常に直 交させ、磁場と c 軸のなす角度を θと定義する.この とき交差した柱状欠陥を導入した試料では、それぞ れ二方向に傾いた柱状欠陥が交差する面内において 磁場を回転させた.

3. 実験結果および考察

77.3K における B //c での J_c の磁場依存性を Fig.1 (a)に示す.低磁場を除いて,全ての照射試料は未照 射の YBCO 薄膜より高い J_c を示している. J_c の値 は,照射量とともに増加する.また,交差した柱状 欠陥を導入した試料より平行な柱状欠陥を導入した 試料の方が J_c は高い傾向が見られる.ただし, $B_{\phi}=$ 1.5 T と 2.0 T の間で照射エネルギーはわずかに異な り,また照射前の J_c の値が全ての試料で同じであっ たかについては,測定していないために不明である.

B = 0.1 T の J_c で規格化した J_c の磁場依存性について Fig. 1 (b)に示す.規格化した J_c では,測定磁場の全範囲で全ての照射試料が未照射の YBCO 薄膜より高い値を示している.未照射の試料では磁場に対して単純に J_c が減少しているが,一方照射試料においてはマッチング磁場の半分あたりにわずかな "shoulder"が見られる.一般に、1 T までの低磁場では、 J_c の磁場依存性は $J_c \sim B^{-\alpha}$ で表すことができる. Table 1 に、各試料の指数 α の値について示す.未照射試料では $\alpha = 0.5$ であり、これは典型的な PLD 法で作製した YBCO 薄膜での値である[6].一方,照射試料の α の値は約 0.3 であり、この値はナノ粒子による強いピンを人工的に導入した試料においても観察されている[2,3,6].

したがって、低磁場では柱状欠陥は全て有効なピ ンニングセンターとして作用しており、結果として J_cの磁場に対する減少が小さくなっている.一方, 高磁場領域では、交差した柱状欠陥を導入した試料 である sp10 と sp25 の J_cは、平行照射した試料と比 較して急激に減少している.

これは、柱状欠陥の方向の分散に起因していると 考えられる.平行な柱状欠陥の場合、柱状欠陥に直 接ピン止めされない量子化磁束は、柱状欠陥にピン 止めされた量子化磁束と弾性相互作用して間接的な ピン止め状態、すなわち集団的相関ピンニング状態 になる[12,13]. 柱状欠陥の方向が分散すると,この 集団的相関ピンニング状態を形成し難くなるためで あろう.

Fig.2 に, *ab* 面方向に磁場を印加したときの臨界 電流密度 $J_c(\theta = 90^\circ)$ で規格化した J_c の磁場角度依存 性を示す.一般に、 $\theta = 90^\circ$ での J_c のピークは、薄膜 に既存する積層欠陥や固有ピンニングに起因する [14].これに対し、 $\theta = 0^\circ$ 付近での J_c のピークは、導 入した柱状欠陥により付加されたものである.この 付加ピークの形は、1T までの低磁場では磁場を増 加するとともに鋭く顕著になっている.高磁場にお いては、この付加ピークは小さくなるが、マッチン

Fig. 1 (a) Magnetic field dependence of critical current density J_c at 77.3 K for B // c. (b) Normalized critical current density $J_c/J_c(B=0.1 \text{ T})$ versus magnetic field at 77.3 K for B // c.

Fig. 2 Angular dependence of critical current density at 77.3 K got (a) 0.3 T, (b) 1 T, (c) 1.5T and (d) 3 T.

グ磁場以上の磁場においても確認される.

柱状欠陥の交差角に対する付加ピークの振る舞い を調べるために、その高さと幅を用いて付加ピーク を特徴づける.付加ピークの高さは、そのピークの 値 $J_{cp} \ge J_c$ の磁場角度依存性における最小値 $J_{cm} \ge O$ 比[12,13]とし、また付加ピークの幅 θ_a は、 $J_{cp} \ge J_{cm}$ における磁場角度の差で定義した[15].この評価法 では、付加ピークが消失するとき、 J_{cp}/J_{cm} の値は1 と なり、 θ_a は0になる.

付加ピークの高さを表すパラメータ J_{cp}/J_{cm} の磁場 依存性を Fig.3 に示す.全ての照射試料において, 低磁場では J_{cp}/J_{cm} は磁場増加とともに増加し,マッ チング磁場の約半分の磁場でピークを示す.この磁 場領域では,sp10における J_{cp}/J_{cm} の値が pa06a と比 較して高い.これは,柱状欠陥の方向に僅かな分散 がある場合,柱状欠陥から他の柱状欠陥へ量子化磁 束が移動し難くなるスプレイ効果[16]に起因する ことが考えられる.

これに対して交差角が大きい sp25 では, pa06b と比較して J_{cp}/J_{cm} の値は低い.これは,大きな交 差角のために,スプレイ果が生じなかったためと 考えられる.YBCO 単結晶において J_c を向上させ るための最適な交差角± θ_i は,±5°であることが報 告されている[9].

 一方、マッチング磁場以上の高磁場では、平行 と交差照射で J_{cp}/J_{cm}の磁場依存性に違いが生じて
いる.平行照射と比較して、交差照射した sp10 と sp25 での J_{cp}/J_{cm} は磁場とともに急激に減少して
いる.これに対して、pa06b の J_{cp}/J_{cm} の値に 3 T 以上で増加の傾向を示している.高磁場での *J*_{cp}/*J*_{cm}の増加は平行照射において見られる現象であり[12, 13],前述した集団的相関ピンニングによるものである.

交差した柱状欠陥においては、高磁場で量子化 磁束の格子間隔が交差した柱状欠陥の拡がりに 対して小さくなると、交差柱状欠陥による相関し た磁束ピンニングが妨げられるために、J_{ep}/J_{em}の 値は高磁場で急激に減少していると考えられる. この振る舞いはナノロッドの方向が分散してい る BaZrO₃ を導入した試料においても確認されて いる[17].

Fig. 2の J_cの磁場角度依存性にも見られるよう に,最も交差角の大きい sp25 においても照射方向 の2 方向に二つのピークは現れていない.低磁場

Fig. 3 Magnetic field dependence of height of the additional peak of $J_c(\theta)$ at 77.3 K

では、二方向に交差した柱状欠陥の中間の角度す なわちθ=0°において、交差柱状欠陥により相関 した磁東ピンニングが実現される.これに対して、 照射方向の角度θ=θ ではその方向の柱状欠陥に ピン止めされている量子化磁束が、-θ方向の柱状 欠陥に沿ってスライドしやすいことが考えられ る.量子化磁束が柱状欠陥とある角度で交差する とき、柱状欠陥に沿って量子化磁束が、スライド することが報告されている[18].これらの理由に より、低磁場では sp25 のような比較的大きな交差 角 50°においても、θ=0°方向に単一のピークしか 現れないと考えられる.

一方,高磁場では交差した柱状欠陥による θ = 0°方向の相関ピンニングは弱くなるが,転位等の ような薄膜に既存の c 軸相関ピンが θ = 0°の J_c に 主に寄与するために,ダブルピークが見え難い状 態になっていると考えられる.このことは,3 T で の sp25 の J_c の磁場角度依存性において, -20°か ら 20°辺りの範囲で平らなピークになっているこ とからも示唆される.

付加ピークの幅を表すパラメータ θ_a の磁場依存性を Fig.4 に示す.この θ_a は,柱状欠陥による磁東ピンニングが消失する角度,すなわちトラッピング角度を近似的に表している.Fig.4 より、3つの特徴が確認できる.まず一つは、 $B_{\phi}=2.0$ Tの θ_a は $B_{\phi}=1.5$ T より全体的に高い値を示していることである.この理由として、磁場が c軸より傾いているときには柱状欠陥の密度が高いほど、量子化磁束と柱状欠陥がピンニング作用する体積が増加することが考えられる.

二つ目の特徴として,低磁場では平行と交差し た柱状欠陥における θ_a の値は,それぞれの欠陥密 度でほぼ等しいことである.この理由は不明であ るが,磁場が c 軸より傾いているとき量子化磁束 と柱状欠陥が相互作用する体積が,平行と交差柱 状欠陥でほぼ同じになっている可能性がある.

Fig. 4 Magnetic field dependence of width of the additional peak of $J_c(\theta)$ at 77.3 K.

三つめの特徴としては、マッチング磁場より高 磁場において交差した柱状欠陥での θ_a の値が平行 な場合と比較して、磁場の増加とともに急激に減 少していることである。特に、sp25 ではこの振る 舞いは顕著で、5T において θ_a の値は0 になって いる。

この理由の一つとして, Fig.2 および Fig.3 での 見られるように交差した柱状欠陥における J_cの 磁場角度依存性での付加ピークの高さが高磁場 で小さくなることに伴うためと考えられる.もう 一つ別の理由として,磁場が c 軸より傾いている とき交差した柱状欠陥においては量子化磁束と 大きく交差する柱状欠陥が存在するために,これ がその方向へ沿った量子化磁束のスライドを促 進している可能性がある.

4. まとめ

臨界電流密度 J_c の磁場角度依存性に対する 1 次 元ピンの方向の分散の影響を明らかにするため に、重イオン照射を用いて YBCO 薄膜内へ交差 した柱状欠陥を導入した. J_c の磁場角度依存性へ の照射欠陥の寄与は、照射によってB // c 付近に 現れる付加ピークの高さを J_{cp}/J_{cm} , その幅を θ_a と して評価した.これらのパラメータの磁場依存性 は、交差角± θ_c とマッチング磁場 B_{ϕ} に影響される.

 B_{ϕ} 以下の低磁場では、交差した柱状欠陥はB//cにおいてc軸相関ピンとして作用する.特に、sp10の付加ピークは pa06a より大きく、これはスプレイ効果によるものと考えられる.

 B_{ϕ} 以上の高磁場では、平行な柱状欠陥と比較して、交差柱状欠陥での磁場増加による J_{c} の減少は顕著である.これは、柱状欠陥の方向の分散が平行な柱状欠陥でみられるような集団的相関ピンニング状態を妨げるためと考えられる.

参考文献

- J. L. Macmanus-Driscoll, S. R. Foltyn, Q. X. Jia, H. Wang, A. Serquis, L. Civale, B. Maiorov, M. E. Hawley, M. P. Maley, D. E. Peterson, Nature Mater. 3 (2004) 439.
- [2] A. Goyal, S. Kang, K. J. Leonard, P, M. Martin, A. A. Gapud, M. Varela, M. Paranthaman, A. O. Ijadola, E. D. Specht, J. R. Thompson, D. K. Christen, S. J. Pennycook, F. A. List, Supercond. Sci. Technol. 18 (2005) 1533.
- [3] P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, Supercond. Sci. Technol. 20 (2007) 244.
- [4] C. V. Varanasi, P. N. Barnes, J. Burke, Supercond. Sci. Technol. 20 (2007) 1071.
- [5] P. Mele, K. Matsumoto, T. Horide, A. Ichinose, M. Mukaida, Y. Yoshida, S. Horii, Supercond. Sci. Technol. 21 (2008) 32002.

- [6] A. A. Gapud, D. Kumar, S. K. Viswanathan, C. Cantoni, M. Varela, J. Abiade, S. J. Pennycook, D. K. Christen, Supercond. Sci. Technol. 18 (2005) 1502.
- [7] L. Civale, A. D. Marwick, T. K. Worthington, M. A. Kirk, J. R. Thompson, L. Krusin-Elbaum, Y. Sun, J. R. Clem, F. Holtzberg, Phys. Rev. Lett. 67 (1991) 648.
- [8] N. Chikumoto, M. Konczykowski, T. Terai, M. Murakami, Supercond. Sci. Technol. 13 (2000) 749.
- [9] L. Krusin-Elbaum, A. D. Marwick, R. Wheeler, C. Feild, V. M. Vinokur, G. K. Leaf, M. Palumbo, Phys. Rev. Lett. 76 (1996) 2563.
- [10] V. Hardy, S. Hebert, C. Goupil, Ch. Simon, J. Provost, M. Hervieu, P. Lejay, Phys. Rev. B 59 (1999) 8455.
- [11] K. Nakashima, N. Chikumoto, A. Ibi, S. Miyata, Y. Yamada, T. Kubo, A. Suzuki, T. Terai, Physica C 463-465 (2007) 665.
- [12] S. Awaji, M. Namba, K. Watanabe, M. Miura, Y. Yoshida, Y. Ichino, Y. Takai, K. Matsumoto, Appl. Phys. Lett. 90 (2007) 122501.
- [13] M. Namba, S. Awaji, K. Watanabe, T. Nojima, S. Okayasu, Physica C 468 (2008) 1652.
- [14] L. Civale, B. Maiorov, J. L. MacManus-Driscoll, H. Wang, T. G. Holesinger, S. R. Foltyn, A. Serquis, P. N. Arendt, IEEE Trans. Appl. Supercond. 50 (2005) 2801.
- [15] L. Civale, B. Maiorov, A. Serquis, J. O. Willis, J. Y. Coulter, H. Wang, Q. X. Jia, P. N. Arendt, J. L. MacManus-Driscoll, M. P. Maley, S. R. Foltyn, Appl. Phys. Lett. 84 (2004) 2121.
- [16] T. Hwa, P. Le Doussal, D. R. Nelson, V. M. Vinokur, Phys. Rev. Lett. 71 (1993) 3545.
- [17] S. Awaji, M. Namba, K. Watanabe, T. Nojima, S. Okayasu, T. Horide, P. Mele, K. Matsumoto, M. Miura, Y. Ichino, Y. Yoshida, Y. Takai, E. Kampert, U. Zeitler, J. Perenboom, J. Phys. : Conf. Ser. 97 (2008) 012328.
- [18] Th. Schuster, M. V. Indenbom, H. Kuhn, H. Konmuller, M. Leghissa, G. Kreiselmeyer, Phys. Rev. B 50 (1994) 9499.